Browse Source

feat: train 脚本

main
mckay 4 months ago
parent
commit
4180ad0eae
  1. 256
      brep2sdf/train.py

256
brep2sdf/train.py

@ -0,0 +1,256 @@
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from brep2sdf.data.data import BRepSDFDataset
from brep2sdf.networks.encoder import BRepToSDF, sdf_loss
from brep2sdf.utils.logger import logger
import wandb
def main():
# 使用字典存储配置参数
config = {
# 数据路径
'brep_dir': '/home/wch/brep2sdf/test_data/pkl',
'sdf_dir': '/home/wch/brep2sdf/test_data/sdf',
'valid_data_dir': '/home/wch/brep2sdf/test_data/result/pkl',
'save_dir': 'checkpoints',
# 训练参数
'batch_size': 32,
'num_workers': 4,
'num_epochs': 100,
'learning_rate': 1e-4,
'min_lr': 1e-6,
'weight_decay': 0.01,
'grad_weight': 0.1,
'max_grad_norm': 1.0,
# 模型参数
'brep_feature_dim': 48,
'use_cf': True,
'embed_dim': 768,
'latent_dim': 256,
# wandb参数
'use_wandb': True,
'project_name': 'brep2sdf',
'run_name': 'training_run',
'log_interval': 10
}
# 创建保存目录
os.makedirs(config['save_dir'], exist_ok=True)
# 初始化wandb (添加超时设置和离线模式)
if config['use_wandb']:
try:
wandb.init(
project=config['project_name'],
name=config['run_name'],
config=config,
settings=wandb.Settings(
init_timeout=180, # 增加超时时间
_disable_stats=True, # 禁用统计
_disable_meta=True, # 禁用元数据
),
mode="offline" # 使用离线模式
)
logger.info("Wandb initialized in offline mode")
except Exception as e:
logger.warning(f"Failed to initialize wandb: {str(e)}")
config['use_wandb'] = False # 禁用wandb
logger.warning("Continuing without wandb logging")
# 初始化训练器并开始训练
trainer = Trainer(config)
trainer.train()
class Trainer:
def __init__(self, config):
self.config = config
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {self.device}")
# 初始化数据集
self.train_dataset = BRepSDFDataset(
brep_dir=config['brep_dir'],
sdf_dir=config['sdf_dir'],
valid_data_dir=config['valid_data_dir'],
split='train'
)
self.val_dataset = BRepSDFDataset(
brep_dir=config['brep_dir'],
sdf_dir=config['sdf_dir'],
valid_data_dir=config['valid_data_dir'],
split='val'
)
logger.info(f"Train dataset size: {len(self.train_dataset)}")
logger.info(f"Val dataset size: {len(self.val_dataset)}")
# 初始化数据加载器
self.train_loader = DataLoader(
self.train_dataset,
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_workers']
)
self.val_loader = DataLoader(
self.val_dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers']
)
# 初始化模型
self.model = BRepToSDF(
brep_feature_dim=config['brep_feature_dim'],
use_cf=config['use_cf'],
embed_dim=config['embed_dim'],
latent_dim=config['latent_dim']
).to(self.device)
# 初始化优化器
self.optimizer = optim.AdamW(
self.model.parameters(),
lr=config['learning_rate'],
weight_decay=config['weight_decay']
)
# 学习率调度器
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(
self.optimizer,
T_max=config['num_epochs'],
eta_min=config['min_lr']
)
def train_epoch(self, epoch):
self.model.train()
total_loss = 0
for batch_idx, batch in enumerate(self.train_loader):
# 获取数据
surf_z = batch['surf_z'].to(self.device)
edge_z = batch['edge_z'].to(self.device)
surf_p = batch['surf_p'].to(self.device)
edge_p = batch['edge_p'].to(self.device)
vert_p = batch['vert_p'].to(self.device)
query_points = batch['points'].to(self.device)
gt_sdf = batch['sdf'].to(self.device)
# 前向传播
pred_sdf = self.model(surf_z, edge_z, surf_p, edge_p, vert_p, query_points)
# 计算损失
loss = sdf_loss(
pred_sdf,
gt_sdf,
query_points,
grad_weight=self.config['grad_weight']
)
# 反向传播
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
self.config['max_grad_norm']
)
self.optimizer.step()
total_loss += loss.item()
# 打印训练进度
if (batch_idx + 1) % self.config['log_interval'] == 0:
logger.info(f'Train Epoch: {epoch} [{batch_idx+1}/{len(self.train_loader)}]\t'
f'Loss: {loss.item():.6f}')
# 记录到wandb
if self.config['use_wandb'] and (batch_idx + 1) % self.config['log_interval'] == 0:
wandb.log({
'batch_loss': loss.item(),
'batch': batch_idx,
'epoch': epoch
})
avg_loss = total_loss / len(self.train_loader)
return avg_loss
def validate(self, epoch):
self.model.eval()
total_loss = 0
with torch.no_grad():
for batch in self.val_loader:
# 获取数据
surf_z = batch['surf_z'].to(self.device)
edge_z = batch['edge_z'].to(self.device)
surf_p = batch['surf_p'].to(self.device)
edge_p = batch['edge_p'].to(self.device)
vert_p = batch['vert_p'].to(self.device)
query_points = batch['points'].to(self.device)
gt_sdf = batch['sdf'].to(self.device)
# 前向传播
pred_sdf = self.model(surf_z, edge_z, surf_p, edge_p, vert_p, query_points)
# 计算损失
loss = sdf_loss(
pred_sdf,
gt_sdf,
query_points,
grad_weight=self.config['grad_weight']
)
total_loss += loss.item()
avg_loss = total_loss / len(self.val_loader)
logger.info(f'Validation Epoch: {epoch}\tAverage Loss: {avg_loss:.6f}')
if self.config['use_wandb']:
wandb.log({
'val_loss': avg_loss,
'epoch': epoch
})
return avg_loss
def train(self):
best_val_loss = float('inf')
logger.info("Starting training...")
for epoch in range(1, self.config['num_epochs'] + 1):
train_loss = self.train_epoch(epoch)
val_loss = self.validate(epoch)
self.scheduler.step()
# 保存最佳模型
if val_loss < best_val_loss:
best_val_loss = val_loss
model_path = os.path.join(self.config['save_dir'], 'best_model.pth')
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'val_loss': val_loss,
}, model_path)
logger.info(f'Saved best model with val_loss: {val_loss:.6f}')
# 记录训练信息
logger.info(f'Epoch: {epoch}\tTrain Loss: {train_loss:.6f}\t'
f'Val Loss: {val_loss:.6f}\tLR: {self.scheduler.get_last_lr()[0]:.6f}')
# 记录到wandb
if self.config['use_wandb']:
wandb.log({
'train_loss': train_loss,
'val_loss': val_loss,
'learning_rate': self.scheduler.get_last_lr()[0],
'epoch': epoch
})
if __name__ == '__main__':
main()
Loading…
Cancel
Save