You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

583 lines
25 KiB

import os
import torch
from torch.utils.data import Dataset
import numpy as np
7 months ago
import pickle
from brep2sdf.utils.logger import logger
from brep2sdf.data.utils import process_brep_data
from brep2sdf.config.default_config import get_default_config
7 months ago
class BRepSDFDataset(Dataset):
def __init__(self, brep_dir:str, sdf_dir:str, valid_data_dir:str, use_filter: bool=True, split:str='train'):
7 months ago
"""
初始化数据集
参数:
brep_dir: pkl文件目录
sdf_dir: npz文件目录
split: 数据集分割('train', 'val', 'test')
"""
super().__init__()
# 使用配置文件
self.config = get_default_config()
7 months ago
self.brep_dir = os.path.join(brep_dir, split)
self.sdf_dir = os.path.join(sdf_dir, split)
self.split = split
7 months ago
# 使用配置文件中的参数替换固定参数
self.max_face = self.config.data.max_face
self.max_edge = self.config.data.max_edge
self.bbox_scaled = self.config.data.bbox_scaled
7 months ago
# 检查目录是否存在
if not os.path.exists(self.brep_dir):
raise ValueError(f"B-rep directory not found: {self.brep_dir}")
if not os.path.exists(self.sdf_dir):
raise ValueError(f"SDF directory not found: {self.sdf_dir}")
# 加载数据列表
# 如果存在valid_data_file,则加载valid_list
valid_data_file = os.path.join(valid_data_dir, f'{split}_success.txt')
if valid_data_file:
valid_data_file = os.path.join(self.brep_dir, valid_data_file)
self.valid_data_list = self._load_valid_list(valid_data_file)
else:
raise ValueError(f"Valid data file not found: {valid_data_file}")
7 months ago
self.brep_data_list = self._load_data_list(self.brep_dir)
self.sdf_data_list = self._load_data_list(self.sdf_dir)
if use_filter:
self._filter_num_faces_and_num_edges()
7 months ago
# 检查数据集是否为空
7 months ago
if len(self.brep_data_list) == 0 :
raise ValueError(f"No valid brep data found in {split} set")
if len(self.sdf_data_list) == 0:
raise ValueError(f"No valid sdf data found in {split} set")
7 months ago
7 months ago
logger.info(f"Loaded {split} dataset with {len(self.brep_data_list)} samples")
def _load_valid_list(self,valid_data_file:str):
with open(valid_data_file, 'r') as f:
valid_list = [line.strip() for line in f.readlines()]
return valid_list
7 months ago
# data_dir 为 self.brep_dir or sdf_dir
def _load_data_list(self, data_dir):
data_list = []
7 months ago
for sample_file in os.listdir(data_dir):
if sample_file.split('.')[0] in self.valid_data_list:
path = os.path.join(data_dir, sample_file)
data_list.append(path)
7 months ago
#logger.info(data_list)
return data_list
def _filter_num_faces_and_num_edges(self):
'''
Filter the data if their face_num or edge_num > max_face or max_edge.
'''
# Collect indices of elements that satisfy the condition
filtered_indices = [
idx for idx in range(len(self.brep_data_list))
if (self._get_brep_face_and_edge(self.brep_data_list[idx]) <= (self.max_face, self.max_edge))
]
#filtered_indices = filtered_indices[0:8] # TODO rm
# Use filtered_indices to update brep_data_list and sdf_data_list
self.brep_data_list = [self.brep_data_list[idx] for idx in filtered_indices]
self.sdf_data_list = [self.sdf_data_list[idx] for idx in filtered_indices]
def __len__(self):
7 months ago
return len(self.brep_data_list)
def __getitem__(self, idx):
7 months ago
"""获取单个数据样本"""
try:
brep_path = self.brep_data_list[idx]
sdf_path = self.sdf_data_list[idx]
7 months ago
name = os.path.splitext(os.path.basename(brep_path))[0]
# 加载B-rep和SDF数据
brep_raw = self._load_brep_file(brep_path)
7 months ago
sdf_data = self._load_sdf_file(sdf_path)
try:
# 处理B-rep数据
brep_features = process_brep_data(
data=brep_raw,
max_face=self.max_face,
max_edge=self.max_edge,
bbox_scaled=self.bbox_scaled
)
'''
# 打印数据形状
logger.debug(f"Processed data shapes for {os.path.basename(brep_path)}:")
for value in brep_features:
if isinstance(value, torch.Tensor):
logger.debug(f" {value.shape}")
# 检查返回值的类型和数量
if not isinstance(brep_features, tuple):
logger.error(f"process_brep_data returned {type(brep_features)}, expected tuple")
raise ValueError("Invalid return type from process_brep_data")
if len(brep_features) != 6:
logger.error(f"Expected 6 features, got {len(brep_features)}")
logger.error("Features returned:")
for i, feat in enumerate(brep_features):
if isinstance(feat, torch.Tensor):
logger.error(f" {i}: Tensor of shape {feat.shape}")
else:
logger.error(f" {i}: {type(feat)}")
raise ValueError(f"Incorrect number of features: {len(brep_features)}")
'''
# 解包处理后的特征
edge_ncs, edge_pos, edge_mask, surf_ncs, surf_pos, vertex_pos = brep_features
sdf_points = sdf_data[:, :3]
sdf_values = sdf_data[:, 3:]
# 构建返回字典
return {
'name': name,
'edge_ncs': edge_ncs, # [max_face, max_edge, 10, 3]
'edge_pos': edge_pos, # [max_face, max_edge, 6]
'edge_mask': edge_mask, # [max_face, max_edge]
'surf_ncs': surf_ncs, # [max_face, 100, 3]
'surf_pos': surf_pos, # [max_face, 6]
'vertex_pos': vertex_pos, # [max_face, max_edge, 6]
'points': sdf_points, # [num_queries, 3] 所有点的xyz坐标
'sdf': sdf_values # [num_queries, 1] 所有点的sdf值
}
except Exception as e:
logger.error(f"\nError processing B-rep data for file: {brep_path}")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
# 打印原始数据的结构
logger.error("\nRaw data structure:")
for key, value in brep_raw.items():
if isinstance(value, list):
logger.error(f" {key}: list of length {len(value)}")
if value:
logger.error(f" First element type: {type(value[0])}")
if hasattr(value[0], 'shape'):
logger.error(f" First element shape: {value[0].shape}")
elif hasattr(value, 'shape'):
logger.error(f" {key}: shape {value.shape}")
else:
logger.error(f" {key}: {type(value)}")
raise
7 months ago
except Exception as e:
logger.error(f"Error loading sample from {brep_path}: {str(e)}")
logger.error("Data structure:")
raise
def _load_brep_file(self, brep_path):
with open(brep_path, 'rb') as f:
brep_raw = pickle.load(f)
return brep_raw
7 months ago
7 months ago
def _load_sdf_file(self, sdf_path):
"""加载和处理SDF数据,并进行随机采样"""
7 months ago
try:
# 加载SDF值
sdf_data = np.load(sdf_path)
if 'pos' not in sdf_data or 'neg' not in sdf_data:
raise ValueError("Missing pos/neg data in SDF file")
sdf_pos = sdf_data['pos'] # (N1, 4)
sdf_neg = sdf_data['neg'] # (N2, 4)
# 添加数据验证
if sdf_pos.shape[1] != 4 or sdf_neg.shape[1] != 4:
raise ValueError(f"Invalid SDF data shape: pos={sdf_pos.shape}, neg={sdf_neg.shape}")
# 随机采样
max_points = self.config.data.num_query_points # 例如4096
# 确保正负样本均衡
if max_points // 2 > sdf_pos.shape[0]:
logger.warning(f"正样本过少,期望>{max_points // 2},实际:{sdf_pos.shape[0]}")
if max_points // 2 > sdf_neg.shape[0]:
num_neg = sdf_neg.shape[0]
else:
num_neg = max_points // 2
num_pos = max_points - num_neg
# 随机采样正样本
if sdf_pos.shape[0] > num_pos:
pos_indices = np.random.choice(sdf_pos.shape[0], num_pos, replace=False)
sdf_pos = sdf_pos[pos_indices]
# 随机采样负样本
if sdf_neg.shape[0] > num_neg:
neg_indices = np.random.choice(sdf_neg.shape[0], num_neg, replace=False)
sdf_neg = sdf_neg[neg_indices]
# 合并数据
7 months ago
sdf_np = np.concatenate([sdf_pos, sdf_neg], axis=0)
# 再次随机打乱
np.random.shuffle(sdf_np)
# 如果总点数仍然超过最大限制,再次采样
if sdf_np.shape[0] > max_points:
indices = np.random.choice(sdf_np.shape[0], max_points, replace=False)
sdf_np = sdf_np[indices]
#logger.debug(f"Sampled SDF points: {sdf_np.shape[0]} (max: {max_points})")
7 months ago
return torch.from_numpy(sdf_np.astype(np.float32))
except Exception as e:
logger.error(f"Error loading SDF from {sdf_path}")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
raise
def _get_brep_face_and_edge(self, brep_path: str) -> tuple[int,int]:
brep: dict = self._load_brep_file(brep_path)
face_edge_adj = brep["faceEdge_adj"]
num_faces, num_edges = face_edge_adj.shape
return num_faces, num_edges
def load_brep_file(brep_path):
with open(brep_path, 'rb') as f:
brep_raw = pickle.load(f)
return brep_raw
def load_sdf_file(sdf_path: str, num_query_points: int = 4096) -> torch.Tensor:
"""
加载和处理SDF数据并进行随机采样
参数:
sdf_path: SDF文件路径
num_query_points: 最大采样点数默认为4096
返回:
sdf_tensor: 处理后的SDF数据张量
"""
try:
# 加载SDF值
sdf_data = np.load(sdf_path)
if 'pos' not in sdf_data or 'neg' not in sdf_data:
raise ValueError("Missing pos/neg data in SDF file")
sdf_pos = sdf_data['pos'] # (N1, 4)
sdf_neg = sdf_data['neg'] # (N2, 4)
# 添加数据验证
if sdf_pos.shape[1] != 4 or sdf_neg.shape[1] != 4:
raise ValueError(f"Invalid SDF data shape: pos={sdf_pos.shape}, neg={sdf_neg.shape}")
# 确保正负样本均衡
if num_query_points // 2 > sdf_pos.shape[0]:
logger.warning(f"正样本过少,期望>{num_query_points // 2},实际:{sdf_pos.shape[0]}")
num_neg = min(num_query_points // 2, sdf_neg.shape[0])
num_pos = num_query_points - num_neg
# 随机采样正样本
if sdf_pos.shape[0] > num_pos:
pos_indices = np.random.choice(sdf_pos.shape[0], num_pos, replace=False)
sdf_pos = sdf_pos[pos_indices]
# 随机采样负样本
if sdf_neg.shape[0] > num_neg:
neg_indices = np.random.choice(sdf_neg.shape[0], num_neg, replace=False)
sdf_neg = sdf_neg[neg_indices]
# 合并数据
sdf_np = np.concatenate([sdf_pos, sdf_neg], axis=0)
# 再次随机打乱
np.random.shuffle(sdf_np)
# 如果总点数仍然超过最大限制,再次采样
if sdf_np.shape[0] > num_query_points:
indices = np.random.choice(sdf_np.shape[0], num_query_points, replace=False)
sdf_np = sdf_np[indices]
return torch.from_numpy(sdf_np.astype(np.float32))
except Exception as e:
logger.error(f"Error loading SDF from {sdf_path}")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
raise
7 months ago
def test_dataset():
"""测试数据集功能"""
try:
# 获取配置
config = get_default_config()
7 months ago
# 定义预期的数据维度
expected_shapes = {
'edge_ncs': (config.data.max_face, config.data.max_edge, config.model.num_edge_points, 3),
'edge_pos': (config.data.max_face, config.data.max_edge, 6),
'edge_mask': (config.data.max_face, config.data.max_edge),
'surf_ncs': (config.data.max_face, config.model.num_surf_points, 3),
'surf_pos': (config.data.max_face, 6),
'vertex_pos': (config.data.max_face, config.data.max_edge, 2, 3),
'points': (config.data.num_query_points, 3),
'sdf': (config.data.num_query_points, 1)
}
7 months ago
logger.info("="*50)
logger.info("测试数据集")
logger.info(f"预期形状:")
for key, shape in expected_shapes.items():
logger.info(f" {key}: {shape}")
# 初始化数据集
dataset = BRepSDFDataset(
brep_dir=config.data.brep_dir,
sdf_dir=config.data.sdf_dir,
valid_data_dir=config.data.valid_data_dir,
split='train'
)
# 测试数据加载
logger.info("\n测试数据加载...")
sample = dataset[0]
# 检查数据类型和形状
logger.info("\n数据类型和形状检查:")
for key, value in sample.items():
if isinstance(value, torch.Tensor):
actual_shape = tuple(value.shape)
expected_shape = expected_shapes.get(key)
shape_match = "" if actual_shape == expected_shape else ""
logger.info(f"\n{key}:")
logger.info(f" 实际形状: {actual_shape}")
logger.info(f" 预期形状: {expected_shape}")
logger.info(f" 匹配状态: {shape_match}")
logger.info(f" 数据类型: {value.dtype}")
# 仅对浮点类型计算数值范围、均值和标准差
if value.dtype.is_floating_point:
logger.info(f" 数值范围: [{value.min():.3f}, {value.max():.3f}]")
logger.info(f" 均值: {value.mean():.3f}")
logger.info(f" 标准差: {value.std():.3f}")
if shape_match == "":
logger.warning(f" 形状不匹配: {key}")
if key in ['points', 'sdf']:
logger.warning(f" 查询点数量不一致,预期 {expected_shape[0]},实际 {actual_shape[0]}")
elif key in ['edge_ncs', 'edge_pos', 'edge_mask']:
logger.warning(f" 边数量不一致,预期 {expected_shape[1]},实际 {actual_shape[1]}")
elif key in ['surf_ncs', 'surf_pos']:
logger.warning(f" 面数量不一致,预期 {expected_shape[0]},实际 {actual_shape[0]}")
# 测试批处理
logger.info("\n测试批处理...")
batch_size = 4
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0
)
batch = next(iter(dataloader))
logger.info("\n批处理形状检查:")
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch_shape = tuple(value.shape)
expected_batch_shape = (batch_size,) + expected_shapes[key]
shape_match = "" if batch_shape == expected_batch_shape else ""
logger.info(f"\n{key}:")
logger.info(f" 实际形状: {batch_shape}")
logger.info(f" 预期形状: {expected_batch_shape}")
logger.info(f" 匹配状态: {shape_match}")
logger.info(f" 数据类型: {value.dtype}")
# 仅对浮点类型计算数值范围、均值和标准差
if value.dtype.is_floating_point:
logger.info(f" 数值范围: [{value.min():.3f}, {value.max():.3f}]")
logger.info(f" 均值: {value.mean():.3f}")
logger.info(f" 标准差: {value.std():.3f}")
if shape_match == "":
logger.warning(f" 批处理形状不匹配: {key}")
logger.info("\n测试完成!")
logger.info("="*50)
7 months ago
except Exception as e:
logger.error(f"测试过程中出错: {str(e)}")
raise
from collections import defaultdict
from tqdm import tqdm
def validate_dataset(split: str = 'train', num_samples: int = None):
"""全面验证数据集
Args:
split: 数据集分割 ('train', 'val', 'test')
num_samples: 要检查的样本数量None表示检查所有样本
"""
try:
config = get_default_config()
logger.info(f"开始验证{split}数据集...")
# 初始化数据集
dataset = BRepSDFDataset(
brep_dir=config.data.brep_dir,
sdf_dir=config.data.sdf_dir,
valid_data_dir=config.data.valid_data_dir,
split='train'
)
total_samples = len(dataset) if num_samples is None else min(num_samples, len(dataset))
logger.info(f"总样本数: {total_samples}")
# 初始化统计信息
stats = {
'face_counts': [],
'edge_counts': [],
'vertex_counts': [],
'sdf_point_counts': [],
'invalid_samples': [],
'shape_mismatches': defaultdict(int),
'value_ranges': defaultdict(lambda: {'min': float('inf'), 'max': float('-inf')}),
'nan_counts': defaultdict(int),
'inf_counts': defaultdict(int)
}
# 遍历数据集
for idx in tqdm(range(total_samples), desc="验证数据"):
try:
sample = dataset[idx]
# 1. 检查数据完整性
required_keys = ['surf_ncs', 'surf_pos', 'edge_ncs', 'edge_pos',
'vertex_pos', 'points', 'sdf', 'edge_mask']
missing_keys = [key for key in required_keys if key not in sample]
if missing_keys:
stats['invalid_samples'].append((idx, f"缺少键: {missing_keys}"))
continue
# 2. 检查形状
expected_shapes = {
'surf_ncs': (config.data.max_face, config.model.num_surf_points, 3),
'surf_pos': (config.data.max_face, 6),
'edge_ncs': (config.data.max_face, config.data.max_edge, config.model.num_edge_points, 3),
'edge_pos': (config.data.max_face, config.data.max_edge, 6),
'edge_mask': (config.data.max_face, config.data.max_edge),
'vertex_pos': (config.data.max_face, config.data.max_edge, 2, 3),
'points': (config.data.num_query_points, 3),
'sdf': (config.data.num_query_points, 1)
}
for key, expected_shape in expected_shapes.items():
if key in sample:
actual_shape = tuple(sample[key].shape)
if actual_shape != expected_shape:
stats['shape_mismatches'][key] += 1
stats['invalid_samples'].append(
(idx, f"{key} 形状不匹配: 预期 {expected_shape}, 实际 {actual_shape}")
)
# 3. 检查数值范围和无效值
for key, tensor in sample.items():
if isinstance(tensor, torch.Tensor) and tensor.dtype.is_floating_point:
# 更新值范围
stats['value_ranges'][key]['min'] = min(stats['value_ranges'][key]['min'],
tensor.min().item())
stats['value_ranges'][key]['max'] = max(stats['value_ranges'][key]['max'],
tensor.max().item())
# 检查NaN和Inf
nan_count = torch.isnan(tensor).sum().item()
inf_count = torch.isinf(tensor).sum().item()
if nan_count > 0:
stats['nan_counts'][key] += nan_count
if inf_count > 0:
stats['inf_counts'][key] += inf_count
# 4. 收集统计信息
stats['face_counts'].append(sample['surf_ncs'].shape[0])
stats['edge_counts'].append(sample['edge_ncs'].shape[1])
stats['vertex_counts'].append(len(torch.unique(sample['vertex_pos'].reshape(-1, 3), dim=0)))
stats['sdf_point_counts'].append(sample['points'].shape[0])
except Exception as e:
stats['invalid_samples'].append((idx, str(e)))
# 输出统计结果
logger.info("\n=== 数据集验证结果 ===")
# 1. 基本统计信息
logger.info("\n基本统计信息:")
logger.info(f"总样本数: {total_samples}")
logger.info(f"有效样本数: {total_samples - len(stats['invalid_samples'])}")
logger.info(f"无效样本数: {len(stats['invalid_samples'])}")
# 2. 形状不匹配统计
if stats['shape_mismatches']:
logger.info("\n形状不匹配统计:")
for key, count in stats['shape_mismatches'].items():
logger.info(f" {key}: {count}个样本不匹配")
# 3. 数值范围统计
logger.info("\n数值范围统计:")
for key, ranges in stats['value_ranges'].items():
logger.info(f" {key}:")
logger.info(f" 最小值: {ranges['min']:.3f}")
logger.info(f" 最大值: {ranges['max']:.3f}")
# 4. 无效值统计
if sum(stats['nan_counts'].values()) > 0 or sum(stats['inf_counts'].values()) > 0:
logger.info("\n无效值统计:")
for key in stats['nan_counts'].keys():
if stats['nan_counts'][key] > 0:
logger.info(f" {key} 包含 {stats['nan_counts'][key]} 个 NaN 值")
for key in stats['inf_counts'].keys():
if stats['inf_counts'][key] > 0:
logger.info(f" {key} 包含 {stats['inf_counts'][key]} 个 Inf 值")
# 5. 几何特征统计
logger.info("\n几何特征统计:")
for name, values in [
('面数', stats['face_counts']),
('边数', stats['edge_counts']),
('顶点数', stats['vertex_counts']),
('SDF采样点数', stats['sdf_point_counts'])
]:
values = np.array(values)
logger.info(f" {name}:")
logger.info(f" 最小值: {np.min(values)}")
logger.info(f" 最大值: {np.max(values)}")
logger.info(f" 平均值: {np.mean(values):.2f}")
logger.info(f" 中位数: {np.median(values):.2f}")
logger.info(f" 标准差: {np.std(values):.2f}")
# 6. 输出无效样本详情
if stats['invalid_samples']:
logger.info("\n无效样本详情:")
for idx, error in stats['invalid_samples']:
logger.info(f" 样本 {idx}: {error}")
return stats
7 months ago
except Exception as e:
logger.error(f"验证过程出错: {str(e)}")
raise
7 months ago
if __name__ == '__main__':
validate_dataset(split='train', num_samples=None) # 先测试100个样本