You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

340 lines
13 KiB

#include <bitset>
#include <fstream>
#include <iomanip>
#include <implicit_predicates.h>
#include <nlohmann/json.hpp>
#include <tbb/tick_count.h>
#include "lut.hpp"
#include "common_structure.hpp"
#include "implicit_arrangement.h"
/* POD data of ia_data */
std::vector<Point3D> ia_vertices{};
std::vector<std::vector<uint32_t>> ia_face_vertices{};
std::vector<uint32_t*> ia_faces_ptr{};
std::vector<uint32_t> ia_face_vertices_count{};
std::vector<uint32_t> ia_supporting_planes{};
std::vector<uint32_t> ia_positive_cells{};
std::vector<uint32_t> ia_negative_cells{};
std::vector<std::vector<uint32_t>> ia_cell_faces{};
std::vector<uint32_t*> ia_cells_ptr{};
std::vector<uint32_t> ia_cell_faces_count{};
std::vector<uint32_t> ia_num_vertices{};
std::vector<uint32_t> ia_num_faces{};
std::vector<uint32_t> ia_num_cells{};
/* global variables */
std::vector<Arrangement3D> ia_data{};
std::vector<uint32_t> ia_indices{};
// inline void from_json(const nlohmann::json& j, Point3D& p)
// {
// p.i0 = j[0].get<uint32_t>();
// p.i1 = j[1].get<uint32_t>();
// p.i2 = j[2].get<uint32_t>();
// }
// inline void parse_ia_into_pods(const nlohmann::json& j)
// {
// const auto& vertices = j[0].get<std::vector<Point3D>>();
// ia_num_vertices.emplace_back(vertices.size());
// ia_vertices.insert(ia_vertices.end(), vertices.begin(), vertices.end());
// assert(ia_num_vertices.back() > 0);
// ia_num_faces.emplace_back(j[1].size());
// for (const auto& face_entry : j[1]) {
// ia_face_vertices_count.emplace_back(face_entry[0].size());
// ia_face_vertices.emplace_back(face_entry[0].get<std::vector<uint32_t>>());
// ia_faces_ptr.emplace_back(ia_face_vertices.back().data());
// ia_supporting_planes.emplace_back(face_entry[1].get<uint32_t>());
// ia_positive_cells.emplace_back(face_entry[2].get<uint32_t>());
// ia_negative_cells.emplace_back(face_entry[3].get<uint32_t>());
// }
// assert(ia_num_faces.back() > 0);
// ia_num_cells.emplace_back(j[2].size());
// for (const auto& cell_entry : j[2]) {
// ia_cell_faces_count.emplace_back(cell_entry.size());
// ia_cell_faces.emplace_back(cell_entry.get<std::vector<uint32_t>>());
// ia_cells_ptr.emplace_back(ia_cell_faces.back().data());
// }
// assert(ia_num_cells.back() > 0);
// }
// EXTERN_C API bool load_lut()
// {
// if (!ia_data.empty() && !ia_indices.empty()) return true;
// auto t0 = tbb::tick_count::now();
// std::ifstream file("ia_lut.msgpack", std::ios::in | std::ios::binary);
// if (!file.is_open()) {
// std::cerr << "Error: IA LUT file does not exist!" << std::endl;
// return false;
// }
// std::vector<char> msgpack(std::istreambuf_iterator<char>(file), {});
// nlohmann::json json = nlohmann::json::from_msgpack(msgpack);
// file.close();
// ia_indices = json["start_index"].get<std::vector<uint32_t>>();
// /* a tet has at least 4 vertices and 4 faces, and we'll use this assumption to reverse space for POD data */
// ia_vertices.reserve(json["data"].size() * 4);
// ia_face_vertices.reserve(json["data"].size() * 4 * 3); // 3 vertices per triangle face
// ia_faces_ptr.reserve(json["data"].size() * 4);
// ia_face_vertices_count.reserve(json["data"].size() * 4);
// ia_supporting_planes.reserve(json["data"].size() * 4);
// ia_positive_cells.reserve(json["data"].size() * 4);
// ia_negative_cells.reserve(json["data"].size() * 4);
// ia_cell_faces.reserve(json["data"].size() * 4);
// ia_cells_ptr.reserve(json["data"].size());
// ia_cell_faces_count.reserve(json["data"].size());
// ia_num_vertices.reserve(json["data"].size());
// ia_num_faces.reserve(json["data"].size());
// ia_num_cells.reserve(json["data"].size());
// // HINT: change of capcity may happen here.
// uint32_t i = 0;
// for (const auto& entry : json["data"]) {
// parse_ia_into_pods(entry);
// std::cout << "Parsed IA: " << i << std::endl;
// i++;
// }
// ia_data.resize(json["data"].size());
// uint32_t vertices_offset{}, faces_offset{}, cells_offset{};
// for (size_t i = 0; i < json["data"].size(); i++) {
// auto& ia = ia_data[i];
// ia.num_vertices = ia_num_vertices[i];
// ia.points = ia_vertices.data() + vertices_offset;
// ia.num_faces = ia_num_faces[i];
// ia.vertices = ia_faces_ptr.data() + faces_offset;
// ia.face_vertices_count = ia_face_vertices_count.data() + faces_offset;
// ia.supporting_planes = ia_supporting_planes.data() + faces_offset;
// ia.positive_cells = ia_positive_cells.data() + faces_offset;
// ia.negative_cells = ia_negative_cells.data() + faces_offset;
// ia.num_cells = ia_num_cells[i];
// ia.faces = ia_cells_ptr.data() + cells_offset;
// ia.cell_faces_count = ia_cell_faces_count.data() + cells_offset;
// ia.num_unique_planes = 0;
// }
// auto t1 = tbb::tick_count::now();
// std::cout << "Loading LUT took " << std::fixed << std::setprecision(10) << (t1 - t0).seconds() << " seconds." <<
// std::endl; return true;
// }
EXTERN_C API bool load_lut()
{
if (!ia_data.empty() && !ia_indices.empty()) return true;
auto t0 = tbb::tick_count::now();
std::ifstream ia_data_file("ia_data.dat", std::ios::in | std::ios::binary);
std::ifstream ia_indices_file("ia_indices.dat", std::ios::in | std::ios::binary);
if (!ia_data_file.is_open() || !ia_indices_file.is_open()) {
std::cerr << "Error: IA LUT file does not exist!" << std::endl;
return false;
}
size_t curr_blob_size{};
ia_data_file >> curr_blob_size;
ia_num_vertices.resize(curr_blob_size);
ia_num_faces.resize(curr_blob_size);
ia_num_cells.resize(curr_blob_size);
ia_data.resize(curr_blob_size);
ia_data_file >> curr_blob_size;
ia_vertices.resize(curr_blob_size);
for (size_t i = 0; i < curr_blob_size; ++i) ia_data_file >> ia_vertices[i].i0 >> ia_vertices[i].i1 >> ia_vertices[i].i2;
ia_data_file >> curr_blob_size;
ia_face_vertices.resize(curr_blob_size);
ia_faces_ptr.resize(curr_blob_size);
ia_face_vertices_count.resize(curr_blob_size);
ia_supporting_planes.resize(curr_blob_size);
ia_positive_cells.resize(curr_blob_size);
ia_negative_cells.resize(curr_blob_size);
for (size_t i = 0; i < curr_blob_size; i++) {
ia_data_file >> ia_face_vertices_count[i];
ia_face_vertices[i].resize(ia_face_vertices_count[i]);
for (size_t j = 0; j < ia_face_vertices_count[i]; j++) ia_data_file >> ia_face_vertices[i][j];
ia_faces_ptr[i] = ia_face_vertices[i].data();
}
for (size_t i = 0; i < curr_blob_size; i++) ia_data_file >> ia_supporting_planes[i];
for (size_t i = 0; i < curr_blob_size; i++) ia_data_file >> ia_positive_cells[i];
for (size_t i = 0; i < curr_blob_size; i++) ia_data_file >> ia_negative_cells[i];
ia_data_file >> curr_blob_size;
ia_cell_faces.resize(curr_blob_size);
ia_cells_ptr.resize(curr_blob_size);
ia_cell_faces_count.resize(curr_blob_size);
for (size_t i = 0; i < curr_blob_size; i++) {
ia_data_file >> ia_cell_faces_count[i];
ia_cell_faces[i].resize(ia_cell_faces_count[i]);
for (size_t j = 0; j < ia_cell_faces_count[i]; j++) ia_data_file >> ia_cell_faces[i][j];
ia_cells_ptr[i] = ia_cell_faces[i].data();
}
for (size_t i = 0; i < ia_data.size(); i++) ia_data_file >> ia_num_vertices[i];
for (size_t i = 0; i < ia_data.size(); i++) ia_data_file >> ia_num_faces[i];
for (size_t i = 0; i < ia_data.size(); i++) ia_data_file >> ia_num_cells[i];
ia_indices_file >> curr_blob_size;
ia_indices.resize(curr_blob_size);
for (size_t i = 0; i < curr_blob_size; i++) ia_indices_file >> ia_indices[i];
ia_data_file.close();
ia_indices_file.close();
uint32_t vertices_offset{}, faces_offset{}, cells_offset{};
for (size_t i = 0; i < ia_data.size(); i++) {
auto& ia = ia_data[i];
ia.num_vertices = ia_num_vertices[i];
ia.points = ia_vertices.data() + vertices_offset;
vertices_offset += ia.num_vertices;
ia.num_faces = ia_num_faces[i];
ia.vertices = ia_faces_ptr.data() + faces_offset;
ia.face_vertices_count = ia_face_vertices_count.data() + faces_offset;
ia.supporting_planes = ia_supporting_planes.data() + faces_offset;
ia.positive_cells = ia_positive_cells.data() + faces_offset;
ia.negative_cells = ia_negative_cells.data() + faces_offset;
faces_offset += ia.num_faces;
ia.num_cells = ia_num_cells[i];
ia.faces = ia_cells_ptr.data() + cells_offset;
ia.cell_faces_count = ia_cell_faces_count.data() + cells_offset;
cells_offset += ia.num_cells;
ia.num_unique_planes = 0;
}
auto t1 = tbb::tick_count::now();
std::cout << "Loading LUT took " << std::fixed << std::setprecision(10) << (t1 - t0).seconds() << " seconds." << std::endl;
return true;
}
EXTERN_C API void lut_print_test()
{
const auto& ia = ia_data[0];
std::cout << "num_vertices: " << ia.num_vertices << std::endl;
std::cout << "num_faces: " << ia.num_faces << std::endl;
std::cout << "num_cells: " << ia.num_cells << std::endl;
std::cout << "points: " << std::endl;
for (size_t i = 0; i < ia.num_vertices; i++) {
std::cout << ia.points[i].i0 << " " << ia.points[i].i1 << " " << ia.points[i].i2 << std::endl;
}
std::cout << "faces: " << std::endl;
for (size_t i = 0; i < ia.num_faces; i++) {
std::cout << "face " << i << std::endl;
for (size_t j = 0; j < ia.face_vertices_count[i]; j++) { std::cout << ia.vertices[i][j] << " "; }
std::cout << std::endl;
}
std::cout << "supporting_planes: " << std::endl;
for (size_t i = 0; i < ia.num_faces; i++) {
std::cout << ia.supporting_planes[i] << std::endl;
}
std::cout << "positive_cells: " << std::endl;
for (size_t i = 0; i < ia.num_faces; i++) {
std::cout << ia.positive_cells[i] << std::endl;
}
std::cout << "negative_cells: " << std::endl;
for (size_t i = 0; i < ia.num_faces; i++) {
std::cout << ia.negative_cells[i] << std::endl;
}
std::cout << "cells: " << std::endl;
for (size_t i = 0; i < ia.num_cells; i++) {
std::cout << "cell " << i << std::endl;
for (size_t j = 0; j < ia.cell_faces_count[i]; j++) { std::cout << ia.faces[i][j] << " "; }
std::cout << std::endl;
}
}
uint32_t ia_compute_outer_index(const Plane3D& p0)
{
// Plane must not intersect tet at vertices.
if (p0.f0 == 0 || p0.f1 == 0 || p0.f2 == 0 || p0.f3 == 0) return INVALID_INDEX;
// To reuse the 2 plane lookup table, we assume the second plane is negative
// on all tet vertices.
size_t index = 0;
if (p0.f0 > 0) index |= 1;
if (p0.f1 > 0) index |= 4;
if (p0.f2 > 0) index |= 16;
if (p0.f3 > 0) index |= 64;
return index;
}
uint32_t ia_compute_outer_index(const Plane3D& p0, const Plane3D& p1)
{
// Plane must not intersect tet at vertices.
if (p0.f0 == 0 || p0.f1 == 0 || p0.f2 == 0 || p0.f3 == 0) return INVALID_INDEX;
if (p1.f0 == 0 || p1.f1 == 0 || p1.f2 == 0 || p1.f3 == 0) return INVALID_INDEX;
size_t index = 0;
if (p0.f0 > 0) index |= 1;
if (p1.f0 > 0) index |= 2;
if (p0.f1 > 0) index |= 4;
if (p1.f1 > 0) index |= 8;
if (p0.f2 > 0) index |= 16;
if (p1.f2 > 0) index |= 32;
if (p0.f3 > 0) index |= 64;
if (p1.f3 > 0) index |= 128;
return index;
}
uint32_t ia_compute_inner_index(uint32_t outer_index, const Plane3D& p0, const Plane3D& p1)
{
std::bitset<2> v0 = outer_index & 3;
std::bitset<2> v1 = (outer_index >> 2) & 3;
std::bitset<2> v2 = (outer_index >> 4) & 3;
std::bitset<2> v3 = (outer_index >> 6) & 3;
size_t index = 0;
size_t edge_count = 0;
std::array<double, 2> pp0, pp1;
auto add_edge = [&](size_t i, size_t j) -> bool {
pp0 = {(&p0.f0)[i], (&p0.f0)[j]};
pp1 = {(&p1.f0)[i], (&p1.f0)[j]};
const auto s = orient1d(pp0.data(), pp1.data());
if (s == ORIENTATION_ZERO || s == ORIENTATION_INVALID) return false;
if (s > 0) index |= (1 << edge_count);
edge_count++;
return true;
};
if ((v0 ^ v1).all())
if (!add_edge(0, 1)) return INVALID_INDEX;
if ((v0 ^ v2).all())
if (!add_edge(0, 2)) return INVALID_INDEX;
if ((v0 ^ v3).all())
if (!add_edge(0, 3)) return INVALID_INDEX;
if ((v1 ^ v2).all())
if (!add_edge(1, 2)) return INVALID_INDEX;
if ((v1 ^ v3).all())
if (!add_edge(1, 3)) return INVALID_INDEX;
if ((v2 ^ v3).all())
if (!add_edge(2, 3)) return INVALID_INDEX;
if (edge_count == 4) {
assert(index != 6 && index != 9); // Impossible cases.
if (index < 6) {
} else if (index < 9) {
index -= 1; // Skipping INVALID_INDEX case with index 6.
} else {
index -= 2; // Skipping INVALID_INDEX case with index 6 and 9.
}
}
return index;
}