You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

259 lines
7.5 KiB

"""
This code was originally published by the following individuals for use with
Scilab:
Copyright (C) 2012 - 2013 - Michael Baudin
Copyright (C) 2012 - Maria Christopoulou
Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
Copyright (C) 2009 - Yann Collette
Copyright (C) 2009 - CEA - Jean-Marc Martinez
website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals. It has been converted to Python by
Abraham Lee.
"""
import numpy as np
from math import factorial
__all__ = ['lhs']
def lhs(n, samples=None, criterion=None, iterations=None):
"""
Generate a latin-hypercube design
Parameters
----------
n : int
The number of factors to generate samples for
Optional
--------
samples : int
The number of samples to generate for each factor (Default: n)
criterion : str
Allowable values are "center" or "c", "maximin" or "m",
"centermaximin" or "cm", and "correlation" or "corr". If no value
given, the design is simply randomized.
iterations : int
The number of iterations in the maximin and correlations algorithms
(Default: 5).
Returns
-------
H : 2d-array
An n-by-samples design matrix that has been normalized so factor values
are uniformly spaced between zero and one.
Example
-------
A 3-factor design (defaults to 3 samples)::
>>> lhs(3)
array([[ 0.40069325, 0.08118402, 0.69763298],
[ 0.19524568, 0.41383587, 0.29947106],
[ 0.85341601, 0.75460699, 0.360024 ]])
A 4-factor design with 6 samples::
>>> lhs(4, samples=6)
array([[ 0.27226812, 0.02811327, 0.62792445, 0.91988196],
[ 0.76945538, 0.43501682, 0.01107457, 0.09583358],
[ 0.45702981, 0.76073773, 0.90245401, 0.18773015],
[ 0.99342115, 0.85814198, 0.16996665, 0.65069309],
[ 0.63092013, 0.22148567, 0.33616859, 0.36332478],
[ 0.05276917, 0.5819198 , 0.67194243, 0.78703262]])
A 2-factor design with 5 centered samples::
>>> lhs(2, samples=5, criterion='center')
array([[ 0.3, 0.5],
[ 0.7, 0.9],
[ 0.1, 0.3],
[ 0.9, 0.1],
[ 0.5, 0.7]])
A 3-factor design with 4 samples where the minimum distance between
all samples has been maximized::
>>> lhs(3, samples=4, criterion='maximin')
array([[ 0.02642564, 0.55576963, 0.50261649],
[ 0.51606589, 0.88933259, 0.34040838],
[ 0.98431735, 0.0380364 , 0.01621717],
[ 0.40414671, 0.33339132, 0.84845707]])
A 4-factor design with 5 samples where the samples are as uncorrelated
as possible (within 10 iterations)::
>>> lhs(4, samples=5, criterion='correlate', iterations=10)
"""
H = None
if samples is None:
samples = n
if criterion is not None:
assert criterion.lower() in ('center', 'c', 'maximin', 'm',
'centermaximin', 'cm', 'correlation',
'corr'), 'Invalid value for "criterion": {}'.format(
criterion)
else:
H = _lhsclassic(n, samples)
if criterion is None:
criterion = 'center'
if iterations is None:
iterations = 5
if H is None:
if criterion.lower() in ('center', 'c'):
H = _lhscentered(n, samples)
elif criterion.lower() in ('maximin', 'm'):
H = _lhsmaximin(n, samples, iterations, 'maximin')
elif criterion.lower() in ('centermaximin', 'cm'):
H = _lhsmaximin(n, samples, iterations, 'centermaximin')
elif criterion.lower() in ('correlate', 'corr'):
H = _lhscorrelate(n, samples, iterations)
return H
################################################################################
def _lhsclassic(n, samples):
# Generate the intervals
cut = np.linspace(0, 1, samples + 1)
# Fill points uniformly in each interval
u = np.random.rand(samples, n)
a = cut[:samples]
b = cut[1:samples + 1]
rdpoints = np.zeros_like(u)
for j in range(n):
rdpoints[:, j] = u[:, j] * (b - a) + a
# Make the random pairings
H = np.zeros_like(rdpoints)
for j in range(n):
order = np.random.permutation(range(samples))
H[:, j] = rdpoints[order, j]
return H
################################################################################
def _lhscentered(n, samples):
# Generate the intervals
cut = np.linspace(0, 1, samples + 1)
# Fill points uniformly in each interval
u = np.random.rand(samples, n)
a = cut[:samples]
b = cut[1:samples + 1]
_center = (a + b) / 2
# Make the random pairings
H = np.zeros_like(u)
for j in range(n):
H[:, j] = np.random.permutation(_center)
return H
################################################################################
def _lhsmaximin(n, samples, iterations, lhstype):
maxdist = 0
# Maximize the minimum distance between points
for i in range(iterations):
if lhstype == 'maximin':
Hcandidate = _lhsclassic(n, samples)
else:
Hcandidate = _lhscentered(n, samples)
d = _pdist(Hcandidate)
if maxdist < np.min(d):
maxdist = np.min(d)
H = Hcandidate.copy()
return H
################################################################################
def _lhscorrelate(n, samples, iterations):
mincorr = np.inf
# Minimize the components correlation coefficients
for i in range(iterations):
# Generate a random LHS
Hcandidate = _lhsclassic(n, samples)
R = np.corrcoef(Hcandidate)
if np.max(np.abs(R[R != 1])) < mincorr:
mincorr = np.max(np.abs(R - np.eye(R.shape[0])))
print(
'new candidate solution found with max,abs corrcoef = {}'.format(
mincorr))
H = Hcandidate.copy()
return H
################################################################################
def _pdist(x):
"""
Calculate the pair-wise point distances of a matrix
Parameters
----------
x : 2d-array
An m-by-n array of scalars, where there are m points in n dimensions.
Returns
-------
d : array
A 1-by-b array of scalars, where b = m*(m - 1)/2. This array contains
all the pair-wise point distances, arranged in the order (1, 0),
(2, 0), ..., (m-1, 0), (2, 1), ..., (m-1, 1), ..., (m-1, m-2).
Examples
--------
::
>>> x = np.array([[0.1629447, 0.8616334],
... [0.5811584, 0.3826752],
... [0.2270954, 0.4442068],
... [0.7670017, 0.7264718],
... [0.8253975, 0.1937736]])
>>> _pdist(x)
array([ 0.6358488, 0.4223272, 0.6189940, 0.9406808, 0.3593699,
0.3908118, 0.3087661, 0.6092392, 0.6486001, 0.5358894])
"""
x = np.atleast_2d(x)
assert len(x.shape) == 2, 'Input array must be 2d-dimensional'
m, n = x.shape
if m < 2:
return []
d = []
for i in range(m - 1):
for j in range(i + 1, m):
d.append((sum((x[j, :] - x[i, :]) ** 2)) ** 0.5)
return np.array(d)
# import matplotlib.pyplot as plt
# h = lhs(2, 5000, criterion='c')
# plt.scatter(h[:, 0], h[:, 1])
# plt.show()
# x = np.random.randint(0, 2, size=10) * 2 - 1
# print(x)