You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

406 lines
12 KiB

#include <iostream>
#include <igl/slim.h>
#include <igl/vertex_components.h>
#include <igl/readOBJ.h>
#include <igl/writeOBJ.h>
#include <igl/Timer.h>
#include <igl/boundary_loop.h>
#include <igl/map_vertices_to_circle.h>
#include <igl/harmonic.h>
#include <igl/MappingEnergyType.h>
#include <igl/serialize.h>
#include <igl/read_triangle_mesh.h>
#include <igl/opengl/glfw/Viewer.h>
#include <igl/flipped_triangles.h>
#include <igl/euler_characteristic.h>
#include <igl/barycenter.h>
#include <igl/adjacency_matrix.h>
#include <igl/is_edge_manifold.h>
#include <igl/doublearea.h>
#include <igl/cat.h>
#include <igl/PI.h>
#include <stdlib.h>
#include <string>
#include <vector>
using namespace std;
using namespace Eigen;
void check_mesh_for_issues(Eigen::MatrixXd& V, Eigen::MatrixXi& F);
void param_2d_demo_iter(igl::opengl::glfw::Viewer& viewer);
void get_soft_constraint_for_circle(Eigen::MatrixXd& V_o, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc);
void soft_const_demo_iter(igl::opengl::glfw::Viewer& viewer);
void deform_3d_demo_iter(igl::opengl::glfw::Viewer& viewer);
void get_cube_corner_constraints(Eigen::MatrixXd& V_o, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc);
void display_3d_mesh(igl::opengl::glfw::Viewer& viewer);
void int_set_to_eigen_vector(const std::set<int>& int_set, Eigen::VectorXi& vec);
Eigen::MatrixXd V;
Eigen::MatrixXi F;
bool first_iter = true;
igl::SLIMData sData;
igl::Timer timer;
double uv_scale_param;
enum DEMO_TYPE {
PARAM_2D,
SOFT_CONST,
DEFORM_3D
};
DEMO_TYPE demo_type;
bool key_down(igl::opengl::glfw::Viewer& viewer, unsigned char key, int modifier){
if (key == ' ') {
switch (demo_type) {
case PARAM_2D: {
param_2d_demo_iter(viewer);
break;
}
case SOFT_CONST: {
soft_const_demo_iter(viewer);
break;
}
case DEFORM_3D: {
deform_3d_demo_iter(viewer);
break;
}
default:
break;
}
}
return false;
}
void param_2d_demo_iter(igl::opengl::glfw::Viewer& viewer) {
if (first_iter) {
timer.start();
igl::read_triangle_mesh(TUTORIAL_SHARED_PATH "/face.obj", V, F);
check_mesh_for_issues(V,F);
cout << "\tMesh is valid!" << endl;
Eigen::MatrixXd uv_init;
Eigen::VectorXi bnd; Eigen::MatrixXd bnd_uv;
igl::boundary_loop(F,bnd);
igl::map_vertices_to_circle(V,bnd,bnd_uv);
igl::harmonic(V,F,bnd,bnd_uv,1,uv_init);
if (igl::flipped_triangles(uv_init,F).size() != 0) {
igl::harmonic(F,bnd,bnd_uv,1,uv_init); // use uniform laplacian
}
cout << "initialized parametrization" << endl;
sData.slim_energy = igl::MappingEnergyType::SYMMETRIC_DIRICHLET;
Eigen::VectorXi b; Eigen::MatrixXd bc;
slim_precompute(V,F,uv_init,sData, igl::MappingEnergyType::SYMMETRIC_DIRICHLET, b,bc,0);
uv_scale_param = 15 * (1./sqrt(sData.mesh_area));
viewer.data().set_mesh(V, F);
viewer.core().align_camera_center(V,F);
viewer.data().set_uv(sData.V_o*uv_scale_param);
viewer.data().compute_normals();
viewer.data().show_texture = true;
first_iter = false;
} else {
timer.start();
slim_solve(sData,1); // 1 iter
viewer.data().set_uv(sData.V_o*uv_scale_param);
}
cout << "time = " << timer.getElapsedTime() << endl;
cout << "energy = " << sData.energy << endl;
}
void soft_const_demo_iter(igl::opengl::glfw::Viewer& viewer) {
if (first_iter) {
igl::read_triangle_mesh(TUTORIAL_SHARED_PATH "/circle.obj", V, F);
check_mesh_for_issues(V,F);
cout << "\tMesh is valid!" << endl;
Eigen::MatrixXd V_0 = V.block(0,0,V.rows(),2);
Eigen::VectorXi b; Eigen::MatrixXd bc;
get_soft_constraint_for_circle(V_0,F,b,bc);
double soft_const_p = 1e5;
slim_precompute(V,F,V_0,sData,igl::MappingEnergyType::SYMMETRIC_DIRICHLET,b,bc,soft_const_p);
viewer.data().set_mesh(V, F);
viewer.core().align_camera_center(V,F);
viewer.data().compute_normals();
viewer.data().show_lines = true;
first_iter = false;
} else {
slim_solve(sData,1); // 1 iter
viewer.data().set_mesh(sData.V_o, F);
}
}
void deform_3d_demo_iter(igl::opengl::glfw::Viewer& viewer) {
if (first_iter) {
timer.start();
igl::readOBJ(TUTORIAL_SHARED_PATH "/cube_40k.obj", V, F);
Eigen::MatrixXd V_0 = V;
Eigen::VectorXi b; Eigen::MatrixXd bc;
get_cube_corner_constraints(V_0,F,b,bc);
double soft_const_p = 1e5;
sData.exp_factor = 5.0;
slim_precompute(V,F,V_0,sData,igl::MappingEnergyType::EXP_CONFORMAL,b,bc,soft_const_p);
//cout << "precomputed" << endl;
first_iter = false;
display_3d_mesh(viewer);
} else {
timer.start();
slim_solve(sData,1); // 1 iter
display_3d_mesh(viewer);
}
cout << "time = " << timer.getElapsedTime() << endl;
cout << "energy = " << sData.energy << endl;
}
void display_3d_mesh(igl::opengl::glfw::Viewer& viewer) {
MatrixXd V_temp; MatrixXi F_temp;
Eigen::MatrixXd Barycenters;
igl::barycenter(sData.V,sData.F,Barycenters);
//cout << "Barycenters.rows() = " << Barycenters.rows() << endl;
//double t = double((key - '1')+1) / 9.0;
double view_depth = 10.;
double t = view_depth/9.;
VectorXd v = Barycenters.col(2).array() - Barycenters.col(2).minCoeff();
v /= v.col(0).maxCoeff();
vector<int> s;
for (unsigned i=0; i<v.size();++i)
if (v(i) < t)
s.push_back(i);
V_temp.resize(s.size()*4,3);
F_temp.resize(s.size()*4,3);
for (unsigned i=0; i<s.size();++i){
V_temp.row(i*4+0) = sData.V_o.row(sData.F(s[i],0));
V_temp.row(i*4+1) = sData.V_o.row(sData.F(s[i],1));
V_temp.row(i*4+2) = sData.V_o.row(sData.F(s[i],2));
V_temp.row(i*4+3) = sData.V_o.row(sData.F(s[i],3));
F_temp.row(i*4+0) << (i*4)+0, (i*4)+1, (i*4)+3;
F_temp.row(i*4+1) << (i*4)+0, (i*4)+2, (i*4)+1;
F_temp.row(i*4+2) << (i*4)+3, (i*4)+2, (i*4)+0;
F_temp.row(i*4+3) << (i*4)+1, (i*4)+2, (i*4)+3;
}
viewer.data().set_mesh(V_temp,F_temp);
viewer.core().align_camera_center(V_temp,F_temp);
viewer.data().set_face_based(true);
viewer.data().show_lines = true;
}
int main(int argc, char *argv[]) {
cerr << "Press space for running an iteration." << std::endl;
cerr << "Syntax: " << argv[0] << " demo_number (1 to 3)" << std::endl;
cerr << "1. 2D unconstrained parametrization" << std::endl;
cerr << "2. 2D deformation with positional constraints" << std::endl;
cerr << "3. 3D mesh deformation with positional constraints" << std::endl;
demo_type = PARAM_2D;
if (argc == 2) {
switch (std::atoi(argv[1])) {
case 1: {
demo_type = PARAM_2D;
break;
} case 2: {
demo_type = SOFT_CONST;
break;
} case 3: {
demo_type = DEFORM_3D;
break;
}
default: {
cerr << "Wrong demo number - Please choose one between 1-3" << std:: endl;
exit(1);
}
}
}
// Launch the viewer
igl::opengl::glfw::Viewer viewer;
viewer.callback_key_down = &key_down;
// Disable wireframe
viewer.data().show_lines = false;
// Draw checkerboard texture
viewer.data().show_texture = false;
// First iteration
key_down(viewer, ' ', 0);
viewer.launch();
return 0;
}
void check_mesh_for_issues(Eigen::MatrixXd& V, Eigen::MatrixXi& F) {
Eigen::SparseMatrix<double> A;
igl::adjacency_matrix(F,A);
Eigen::MatrixXi C, Ci;
igl::vertex_components(A, C, Ci);
int connected_components = Ci.rows();
if (connected_components!=1) {
cout << "Error! Input has multiple connected components" << endl; exit(1);
}
int euler_char = igl::euler_characteristic(V, F);
if (euler_char!=1)
{
cout <<
"Error! Input does not have a disk topology, it's euler char is " <<
euler_char << endl;
exit(1);
}
bool is_edge_manifold = igl::is_edge_manifold(F);
if (!is_edge_manifold) {
cout << "Error! Input is not an edge manifold" << endl; exit(1);
}
Eigen::VectorXd areas; igl::doublearea(V,F,areas);
const double eps = 1e-14;
for (int i = 0; i < areas.rows(); i++) {
if (areas(i) < eps) {
cout << "Error! Input has zero area faces" << endl; exit(1);
}
}
}
void get_soft_constraint_for_circle(Eigen::MatrixXd& V_o, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc) {
Eigen::VectorXi bnd;
igl::boundary_loop(F,bnd);
const int B_STEPS = 22; // constraint every B_STEPS vertices of the boundary
b.resize(bnd.rows()/B_STEPS);
bc.resize(b.rows(),2);
int c_idx = 0;
for (int i = B_STEPS; i < bnd.rows(); i+=B_STEPS) {
b(c_idx) = bnd(i);
c_idx++;
}
bc.row(0) = V_o.row(b(0)); // keep it there for now
bc.row(1) = V_o.row(b(2));
bc.row(2) = V_o.row(b(3));
bc.row(3) = V_o.row(b(4));
bc.row(4) = V_o.row(b(5));
bc.row(0) << V_o(b(0),0), 0;
bc.row(4) << V_o(b(4),0), 0;
bc.row(2) << V_o(b(2),0), 0.1;
bc.row(3) << V_o(b(3),0), 0.05;
bc.row(1) << V_o(b(1),0), -0.15;
bc.row(5) << V_o(b(5),0), +0.15;
}
void get_cube_corner_constraints(Eigen::MatrixXd& V, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc) {
double min_x,max_x,min_y,max_y,min_z,max_z;
min_x = V.col(0).minCoeff(); max_x = V.col(0).maxCoeff();
min_y = V.col(1).minCoeff(); max_y = V.col(1).maxCoeff();
min_z = V.col(2).minCoeff(); max_z = V.col(2).maxCoeff();
// get all cube corners
b.resize(8,1); bc.resize(8,3);
int x;
for (int i = 0; i < V.rows(); i++) {
if (V.row(i) == Eigen::RowVector3d(min_x,min_y,min_z)) b(0) = i;
if (V.row(i) == Eigen::RowVector3d(min_x,min_y,max_z)) b(1) = i;
if (V.row(i) == Eigen::RowVector3d(min_x,max_y,min_z)) b(2) = i;
if (V.row(i) == Eigen::RowVector3d(min_x,max_y,max_z)) b(3) = i;
if (V.row(i) == Eigen::RowVector3d(max_x,min_y,min_z)) b(4) = i;
if (V.row(i) == Eigen::RowVector3d(max_x,max_y,min_z)) b(5) = i;
if (V.row(i) == Eigen::RowVector3d(max_x,min_y,max_z)) b(6) = i;
if (V.row(i) == Eigen::RowVector3d(max_x,max_y,max_z)) b(7) = i;
}
// get all cube edges
std::set<int> cube_edge1; Eigen::VectorXi cube_edge1_vec;
for (int i = 0; i < V.rows(); i++) {
if ((V(i,0) == min_x && V(i,1) == min_y)) {
cube_edge1.insert(i);
}
}
Eigen::VectorXi edge1;
int_set_to_eigen_vector(cube_edge1, edge1);
std::set<int> cube_edge2; Eigen::VectorXi edge2;
for (int i = 0; i < V.rows(); i++) {
if ((V(i,0) == max_x && V(i,1) == max_y)) {
cube_edge2.insert(i);
}
}
int_set_to_eigen_vector(cube_edge2, edge2);
b = igl::cat(1,edge1,edge2);
std::set<int> cube_edge3; Eigen::VectorXi edge3;
for (int i = 0; i < V.rows(); i++) {
if ((V(i,0) == max_x && V(i,1) == min_y)) {
cube_edge3.insert(i);
}
}
int_set_to_eigen_vector(cube_edge3, edge3);
b = igl::cat(1,b,edge3);
std::set<int> cube_edge4; Eigen::VectorXi edge4;
for (int i = 0; i < V.rows(); i++) {
if ((V(i,0) == min_x && V(i,1) == max_y)) {
cube_edge4.insert(i);
}
}
int_set_to_eigen_vector(cube_edge4, edge4);
b = igl::cat(1,b,edge4);
bc.resize(b.rows(),3);
Eigen::Matrix3d m; m = Eigen::AngleAxisd(0.3 * igl::PI, Eigen::Vector3d(1./sqrt(2.),1./sqrt(2.),0.)/*Eigen::Vector3d::UnitX()*/);
int i = 0;
for (; i < cube_edge1.size(); i++) {
Eigen::RowVector3d edge_rot_center(min_x,min_y,(min_z+max_z)/2.);
bc.row(i) = (V.row(b(i)) - edge_rot_center) * m + edge_rot_center;
}
for (; i < cube_edge1.size() + cube_edge2.size(); i++) {
Eigen::RowVector3d edge_rot_center(max_x,max_y,(min_z+max_z)/2.);
bc.row(i) = (V.row(b(i)) - edge_rot_center) * m.transpose() + edge_rot_center;
}
for (; i < cube_edge1.size() + cube_edge2.size() + cube_edge3.size(); i++) {
bc.row(i) = 0.75*V.row(b(i));
}
for (; i < b.rows(); i++) {
bc.row(i) = 0.75*V.row(b(i));
}
}
void int_set_to_eigen_vector(const std::set<int>& int_set, Eigen::VectorXi& vec) {
vec.resize(int_set.size()); int idx = 0;
for(auto f : int_set) {
vec(idx) = f; idx++;
}
}