You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							123 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							123 lines
						
					
					
						
							4.6 KiB
						
					
					
				| // This file is part of libigl, a simple c++ geometry processing library. | |
| //  | |
| // Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla Public License | |
| // v. 2.0. If a copy of the MPL was not distributed with this file, You can | |
| // obtain one at http://mozilla.org/MPL/2.0/. | |
| #include "extract_non_manifold_edge_curves.h" | |
| #include <algorithm> | |
| #include <cassert> | |
| #include <list> | |
| #include <vector> | |
| #include <unordered_map> | |
|  | |
| template< | |
| typename DerivedF, | |
| typename DerivedEMAP, | |
| typename uE2EType > | |
| IGL_INLINE void igl::extract_non_manifold_edge_curves( | |
|         const Eigen::MatrixBase<DerivedF>& F, | |
|         const Eigen::MatrixBase<DerivedEMAP>& /*EMAP*/, | |
|         const std::vector<std::vector<uE2EType> >& uE2E, | |
|         std::vector<std::vector<size_t> >& curves) { | |
|     const size_t num_faces = F.rows(); | |
|     assert(F.cols() == 3); | |
|     //typedef std::pair<size_t, size_t> Edge; | |
|     auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; }; | |
|     auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; }; | |
|     auto get_edge_end_points = [&](size_t ei, size_t& s, size_t& d) { | |
|         const size_t fi = edge_index_to_face_index(ei); | |
|         const size_t ci = edge_index_to_corner_index(ei); | |
|         s = F(fi, (ci+1)%3); | |
|         d = F(fi, (ci+2)%3); | |
|     }; | |
| 
 | |
|     curves.clear(); | |
|     const size_t num_unique_edges = uE2E.size(); | |
|     std::unordered_multimap<size_t, size_t> vertex_edge_adjacency; | |
|     std::vector<size_t> non_manifold_edges; | |
|     for (size_t i=0; i<num_unique_edges; i++) { | |
|         const auto& adj_edges = uE2E[i]; | |
|         if (adj_edges.size() == 2) continue; | |
| 
 | |
|         const size_t ei = adj_edges[0]; | |
|         size_t s,d; | |
|         get_edge_end_points(ei, s, d); | |
|         vertex_edge_adjacency.insert({{s, i}, {d, i}}); | |
|         non_manifold_edges.push_back(i); | |
|         assert(vertex_edge_adjacency.count(s) > 0); | |
|         assert(vertex_edge_adjacency.count(d) > 0); | |
|     } | |
| 
 | |
|     auto expand_forward = [&](std::list<size_t>& edge_curve, | |
|             size_t& front_vertex, size_t& end_vertex) { | |
|         while(vertex_edge_adjacency.count(front_vertex) == 2 && | |
|                 front_vertex != end_vertex) { | |
|             auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex); | |
|             for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) { | |
|                 const size_t uei = itr->second; | |
|                 assert(uE2E.at(uei).size() != 2); | |
|                 const size_t ei = uE2E[uei][0]; | |
|                 if (uei == edge_curve.back()) continue; | |
|                 size_t s,d; | |
|                 get_edge_end_points(ei, s, d); | |
|                 edge_curve.push_back(uei); | |
|                 if (s == front_vertex) { | |
|                     front_vertex = d; | |
|                 } else if (d == front_vertex) { | |
|                     front_vertex = s; | |
|                 } else { | |
|                     throw "Invalid vertex/edge adjacency!"; | |
|                 } | |
|                 break; | |
|             } | |
|         } | |
|     }; | |
| 
 | |
|     auto expand_backward = [&](std::list<size_t>& edge_curve, | |
|             size_t& front_vertex, size_t& end_vertex) { | |
|         while(vertex_edge_adjacency.count(front_vertex) == 2 && | |
|                 front_vertex != end_vertex) { | |
|             auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex); | |
|             for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) { | |
|                 const size_t uei = itr->second; | |
|                 assert(uE2E.at(uei).size() != 2); | |
|                 const size_t ei = uE2E[uei][0]; | |
|                 if (uei == edge_curve.front()) continue; | |
|                 size_t s,d; | |
|                 get_edge_end_points(ei, s, d); | |
|                 edge_curve.push_front(uei); | |
|                 if (s == front_vertex) { | |
|                     front_vertex = d; | |
|                 } else if (d == front_vertex) { | |
|                     front_vertex = s; | |
|                 } else { | |
|                     throw "Invalid vertex/edge adjcency!"; | |
|                 } | |
|                 break; | |
|             } | |
|         } | |
|     }; | |
| 
 | |
|     std::vector<bool> visited(num_unique_edges, false); | |
|     for (const size_t i : non_manifold_edges) { | |
|         if (visited[i]) continue; | |
|         std::list<size_t> edge_curve; | |
|         edge_curve.push_back(i); | |
| 
 | |
|         const auto& adj_edges = uE2E[i]; | |
|         assert(adj_edges.size() != 2); | |
|         const size_t ei = adj_edges[0]; | |
|         size_t s,d; | |
|         get_edge_end_points(ei, s, d); | |
| 
 | |
|         expand_forward(edge_curve, d, s); | |
|         expand_backward(edge_curve, s, d); | |
|         curves.emplace_back(edge_curve.begin(), edge_curve.end()); | |
|         for (auto itr = edge_curve.begin(); itr!=edge_curve.end(); itr++) { | |
|             visited[*itr] = true; | |
|         } | |
|     } | |
| 
 | |
| }
 | |
| 
 |