You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

123 lines
4.6 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "extract_non_manifold_edge_curves.h"
#include <algorithm>
#include <cassert>
#include <list>
#include <vector>
#include <unordered_map>
template<
typename DerivedF,
typename DerivedEMAP,
typename uE2EType >
IGL_INLINE void igl::extract_non_manifold_edge_curves(
const Eigen::MatrixBase<DerivedF>& F,
const Eigen::MatrixBase<DerivedEMAP>& /*EMAP*/,
const std::vector<std::vector<uE2EType> >& uE2E,
std::vector<std::vector<size_t> >& curves) {
const size_t num_faces = F.rows();
assert(F.cols() == 3);
//typedef std::pair<size_t, size_t> Edge;
auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
auto get_edge_end_points = [&](size_t ei, size_t& s, size_t& d) {
const size_t fi = edge_index_to_face_index(ei);
const size_t ci = edge_index_to_corner_index(ei);
s = F(fi, (ci+1)%3);
d = F(fi, (ci+2)%3);
};
curves.clear();
const size_t num_unique_edges = uE2E.size();
std::unordered_multimap<size_t, size_t> vertex_edge_adjacency;
std::vector<size_t> non_manifold_edges;
for (size_t i=0; i<num_unique_edges; i++) {
const auto& adj_edges = uE2E[i];
if (adj_edges.size() == 2) continue;
const size_t ei = adj_edges[0];
size_t s,d;
get_edge_end_points(ei, s, d);
vertex_edge_adjacency.insert({{s, i}, {d, i}});
non_manifold_edges.push_back(i);
assert(vertex_edge_adjacency.count(s) > 0);
assert(vertex_edge_adjacency.count(d) > 0);
}
auto expand_forward = [&](std::list<size_t>& edge_curve,
size_t& front_vertex, size_t& end_vertex) {
while(vertex_edge_adjacency.count(front_vertex) == 2 &&
front_vertex != end_vertex) {
auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
const size_t uei = itr->second;
assert(uE2E.at(uei).size() != 2);
const size_t ei = uE2E[uei][0];
if (uei == edge_curve.back()) continue;
size_t s,d;
get_edge_end_points(ei, s, d);
edge_curve.push_back(uei);
if (s == front_vertex) {
front_vertex = d;
} else if (d == front_vertex) {
front_vertex = s;
} else {
throw "Invalid vertex/edge adjacency!";
}
break;
}
}
};
auto expand_backward = [&](std::list<size_t>& edge_curve,
size_t& front_vertex, size_t& end_vertex) {
while(vertex_edge_adjacency.count(front_vertex) == 2 &&
front_vertex != end_vertex) {
auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
const size_t uei = itr->second;
assert(uE2E.at(uei).size() != 2);
const size_t ei = uE2E[uei][0];
if (uei == edge_curve.front()) continue;
size_t s,d;
get_edge_end_points(ei, s, d);
edge_curve.push_front(uei);
if (s == front_vertex) {
front_vertex = d;
} else if (d == front_vertex) {
front_vertex = s;
} else {
throw "Invalid vertex/edge adjcency!";
}
break;
}
}
};
std::vector<bool> visited(num_unique_edges, false);
for (const size_t i : non_manifold_edges) {
if (visited[i]) continue;
std::list<size_t> edge_curve;
edge_curve.push_back(i);
const auto& adj_edges = uE2E[i];
assert(adj_edges.size() != 2);
const size_t ei = adj_edges[0];
size_t s,d;
get_edge_end_points(ei, s, d);
expand_forward(edge_curve, d, s);
expand_backward(edge_curve, s, d);
curves.emplace_back(edge_curve.begin(), edge_curve.end());
for (auto itr = edge_curve.begin(); itr!=edge_curve.end(); itr++) {
visited[*itr] = true;
}
}
}