You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

112 lines
3.5 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_ARAP_H
#define IGL_ARAP_H
#include "igl_inline.h"
#include "min_quad_with_fixed.h"
#include "ARAPEnergyType.h"
#include <Eigen/Core>
#include <Eigen/Sparse>
namespace igl
{
struct ARAPData
{
// n #V
// G #V list of group indices (1 to k) for each vertex, such that vertex i
// is assigned to group G(i)
// energy type of energy to use
// with_dynamics whether using dynamics (need to call arap_precomputation
// after changing)
// f_ext #V by dim list of external forces
// vel #V by dim list of velocities
// h dynamics time step
// ym ~Young's modulus smaller is softer, larger is more rigid/stiff
// max_iter maximum inner iterations
// K rhs pre-multiplier
// M mass matrix
// solver_data quadratic solver data
// b list of boundary indices into V
// dim dimension being used for solving
int n;
Eigen::VectorXi G;
ARAPEnergyType energy;
bool with_dynamics;
Eigen::MatrixXd f_ext,vel;
double h;
double ym;
int max_iter;
Eigen::SparseMatrix<double> K,M;
Eigen::SparseMatrix<double> CSM;
min_quad_with_fixed_data<double> solver_data;
Eigen::VectorXi b;
int dim;
ARAPData():
n(0),
G(),
energy(ARAP_ENERGY_TYPE_DEFAULT),
with_dynamics(false),
f_ext(),
h(1),
ym(1),
max_iter(10),
K(),
CSM(),
solver_data(),
b(),
dim(-1) // force this to be set by _precomputation
{
};
};
// Compute necessary information to start using an ARAP deformation
//
// Inputs:
// V #V by dim list of mesh positions
// F #F by simplex-size list of triangle|tet indices into V
// dim dimension being used at solve time. For deformation usually dim =
// V.cols(), for surface parameterization V.cols() = 3 and dim = 2
// b #b list of "boundary" fixed vertex indices into V
// Outputs:
// data struct containing necessary precomputation
template <
typename DerivedV,
typename DerivedF,
typename Derivedb>
IGL_INLINE bool arap_precomputation(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const int dim,
const Eigen::MatrixBase<Derivedb> & b,
ARAPData & data);
// Inputs:
// bc #b by dim list of boundary conditions
// data struct containing necessary precomputation and parameters
// U #V by dim initial guess
//
// NOTE: While the libigl guidelines require outputs to be of type
// PlainObjectBase so that the user does not need to worry about allocating
// memory for the output, in this case, the user is required to give an initial
// guess and hence fix the size of the problem domain.
// Taking a reference to MatrixBase in this case thus allows the user to provide e.g.
// a map to the position data, allowing seamless interoperability with user-defined
// datastructures without requiring a copy.
template <
typename Derivedbc,
typename DerivedU>
IGL_INLINE bool arap_solve(
const Eigen::MatrixBase<Derivedbc> & bc,
ARAPData & data,
Eigen::MatrixBase<DerivedU> & U);
};
#ifndef IGL_STATIC_LIBRARY
#include "arap.cpp"
#endif
#endif