// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2015 Alec Jacobson // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #ifndef IGL_PIECEWISE_CONSTANT_WINDING_NUMBER_H #define IGL_PIECEWISE_CONSTANT_WINDING_NUMBER_H #include "igl_inline.h" #include #include namespace igl { // PIECEWISE_CONSTANT_WINDING_NUMBER Determine if a given mesh induces a // piecewise constant winding number field: Is this mesh valid input to solid // set operations. **Assumes** that `(V,F)` contains no self-intersections // (including degeneracies and co-incidences). If there are co-planar and // co-incident vertex placements, a mesh could _fail_ this combinatorial test // but still induce a piecewise-constant winding number _geometrically_. For // example, consider a hemisphere with boundary and then pinch the boundary // "shut" along a line segment. The **_bullet-proof_** check is to first // resolve all self-intersections in `(V,F) -> (SV,SF)` (i.e. what the // `igl::copyleft::cgal::piecewise_constant_winding_number` overload does). // // Inputs: // F #F by 3 list of triangle indices into some (abstract) list of // vertices V // uE #uE by 2 list of unique edges indices into V // uEC #uE+1 list of cumsums of directed edges sharing each unique edge // uEE #E list of indices into E (see `igl::unique_edge_map`) // Returns true if the mesh _combinatorially_ induces a piecewise constant // winding number field. // template < typename DerivedF, typename DeriveduE, typename DeriveduEC, typename DeriveduEE> IGL_INLINE bool piecewise_constant_winding_number( const Eigen::MatrixBase& F, const Eigen::MatrixBase& uE, const Eigen::MatrixBase& uEC, const Eigen::MatrixBase& uEE); template IGL_INLINE bool piecewise_constant_winding_number( const Eigen::MatrixBase& F); } #ifndef IGL_STATIC_LIBRARY # include "piecewise_constant_winding_number.cpp" #endif #endif