You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

915 lines
30 KiB

(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 30736, 907]
NotebookOptionsPosition[ 28174, 857]
NotebookOutlinePosition[ 28508, 872]
CellTagsIndexPosition[ 28465, 869]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"P", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EE", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nu", " ", "=", " ", "0.25"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{"P", ",", "EE", ",", "nu"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"lam", " ", "=", " ",
FractionBox[
RowBox[{"EE", " ", "nu"}],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}],
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", "nu"}]}], ")"}]}]]}], ";", " ",
RowBox[{"mu", "=",
FractionBox["EE",
RowBox[{"2",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}]}]]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"r", "^", "2"}], "+",
RowBox[{"z", "^", "2"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"u", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{
FractionBox[
RowBox[{"P", " ", "r"}],
RowBox[{"4", " ", "Pi", " ", "mu"}]],
RowBox[{"(",
RowBox[{
FractionBox["z",
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}], "^", "3"}]], "-",
FractionBox[
RowBox[{"1", "-",
RowBox[{"2", " ", "nu"}]}],
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}],
RowBox[{"(",
RowBox[{"z", "+",
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}]}], ")"}]}]]}],
")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"w", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{
FractionBox["P",
RowBox[{"4", " ", "Pi", " ", "mu"}]],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"z", "^", "2"}],
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}], "^", "3"}]], "+",
FractionBox[
RowBox[{"2",
RowBox[{"(",
RowBox[{"1", "-", " ", "nu"}], ")"}]}],
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}]]}], ")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"$Assumptions", "=",
RowBox[{"{",
RowBox[{"r", "\[GreaterEqual]", "0"}], "}"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.754054516273575*^9, 3.754054626828129*^9}, {
3.754055532862381*^9, 3.754055533228153*^9}, {3.754055608627458*^9,
3.754055614748624*^9}, {3.754055694184621*^9, 3.7540557016947308`*^9}, {
3.754056126860133*^9, 3.754056132324832*^9}, {3.754056411350913*^9,
3.7540564156510267`*^9}, {3.7546357993238363`*^9, 3.754635928326487*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ba229dd5-ce07-4e83-82d7-910597da5e23"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"sr", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{
FractionBox["P",
RowBox[{"2", " ", "Pi"}]],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"1", "-",
RowBox[{"2", " ", "nu"}]}],
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}],
RowBox[{"(",
RowBox[{"z", "+",
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}]}], ")"}]}]], "-",
FractionBox[
RowBox[{"3",
RowBox[{"r", "^", "2"}], "z"}],
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}], "^", "5"}]]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sz", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{"-",
FractionBox[
RowBox[{"3", "P", " ",
RowBox[{"z", "^", "3"}]}],
RowBox[{"2", " ", "Pi", " ",
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}], "^", "5"}]}]]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"st", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{
FractionBox[
RowBox[{"P",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", "nu"}]}], ")"}]}],
RowBox[{"2", " ", "Pi"}]],
RowBox[{"(",
RowBox[{
FractionBox["z",
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}], "^", "3"}]], "-",
FractionBox["1",
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}],
RowBox[{"(",
RowBox[{"z", "+",
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}]}], ")"}]}]]}],
")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"trz", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{"-",
FractionBox[
RowBox[{"3", " ", "P", " ", "r", " ",
RowBox[{"z", "^", "2"}]}],
RowBox[{"2", " ", "Pi", " ",
RowBox[{
RowBox[{"rho", "[",
RowBox[{"r", ",", "z"}], "]"}], "^",
"5"}]}]]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"sr", "[",
RowBox[{"r", ",", "z"}], "]"}], ",", "0", ",",
RowBox[{"trz", "[",
RowBox[{"r", ",", "z"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"st", "[",
RowBox[{"r", ",", "z"}], "]"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"trz", "[",
RowBox[{"r", ",", "z"}], "]"}], ",", "0", ",",
RowBox[{"sz", "[",
RowBox[{"r", ",", "z"}], "]"}]}], "}"}]}],
"}"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "[",
RowBox[{"r", ",", "z"}], "]"}], "//", "MatrixForm"}]}], "Input",
CellChangeTimes->{{3.7540560528785057`*^9, 3.7540561358517027`*^9}, {
3.7540561848095617`*^9, 3.754056386511614*^9}, {3.754380951762826*^9,
3.7543811843221493`*^9}, {3.754635635739324*^9, 3.754635702725801*^9}, {
3.754635773002678*^9, 3.754635777795294*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"c0887786-553a-4583-a695-e7207ae57473"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{"P", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
SuperscriptBox["r", "2"], " ", "z"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]]}], "+",
FractionBox[
RowBox[{"1", "-",
RowBox[{"2", " ", "nu"}]}],
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}]], " ",
RowBox[{"(",
RowBox[{"z", "+",
SqrtBox[
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}]]}], ")"}]}]]}], ")"}]}],
RowBox[{"2", " ", "\[Pi]"}]], "0",
RowBox[{"-",
FractionBox[
RowBox[{"3", " ", "P", " ", "r", " ",
SuperscriptBox["z", "2"]}],
RowBox[{"2", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}]},
{"0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", " ", "nu"}]}], ")"}], " ", "P", " ",
RowBox[{"(",
RowBox[{
FractionBox["z",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]], "-",
FractionBox["1",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}]], " ",
RowBox[{"(",
RowBox[{"z", "+",
SqrtBox[
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}]]}], ")"}]}]]}], ")"}]}],
RowBox[{"2", " ", "\[Pi]"}]], "0"},
{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ", "P", " ", "r", " ",
SuperscriptBox["z", "2"]}],
RowBox[{"2", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], "0",
RowBox[{"-",
FractionBox[
RowBox[{"3", " ", "P", " ",
SuperscriptBox["z", "3"]}],
RowBox[{"2", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.754635778697755*^9, 3.755186563914517*^9,
3.757250096894998*^9},
CellLabel->
"Out[15]//MatrixForm=",ExpressionUUID->"2b134d5e-24c5-4c37-9af9-\
583b33e8d795"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Div", "[",
RowBox[{
RowBox[{"s", "[",
RowBox[{"r", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "t", ",", "z"}], "}"}], ",", "\"\<Cylindrical\>\""}],
"]"}], "//", "Simplify"}]], "Input",
CellChangeTimes->{{3.754056392109322*^9, 3.75405642250729*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"9ff14b20-2357-479e-be54-54f97cdc2715"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.754056406455949*^9, 3.754056422894541*^9}, {
3.754370777561137*^9, 3.754370789445117*^9}, {3.7543810649792433`*^9,
3.7543810674571753`*^9}, 3.754381125611532*^9, 3.754635706858164*^9,
3.754635780203562*^9, 3.755186566716407*^9},
CellLabel->"Out[16]=",ExpressionUUID->"a70426ab-ea32-4886-812d-2b880834c406"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"PP", "=", "1"}], ";",
RowBox[{"EEE", "=", "1"}], ";",
RowBox[{"nnu", "=", "0.25"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"repl", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"P", "\[Rule]", "PP"}], ",",
RowBox[{"EE", "\[Rule]", "EEE"}], ",",
RowBox[{"nu", "\[Rule]", "nnu"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{
RowBox[{"sr", "[",
RowBox[{"r", ",", "z"}], "]"}], "/.", "repl"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "5"}], ",", "0"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Medium"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{
RowBox[{"st", "[",
RowBox[{"r", ",", "z"}], "]"}], "/.", "repl"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "5"}], ",", "0"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Medium"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{
RowBox[{"sz", "[",
RowBox[{"r", ",", "z"}], "]"}], "/.", "repl"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "5"}], ",", "0"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Medium"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{
RowBox[{"trz", "[",
RowBox[{"r", ",", "z"}], "]"}], "/.", "repl"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "5"}], ",", "0"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Medium"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}]}], "Input",
CellChangeTimes->{{3.7541175254906387`*^9, 3.754117688650277*^9}, {
3.7541177740225058`*^9, 3.754117847452406*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"6a668b9e-2924-46e5-862d-4f5c974dda1a"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"uu", "=",
RowBox[{
RowBox[{"r", "/", "EE"}],
RowBox[{"(",
RowBox[{
RowBox[{"st", "[",
RowBox[{"r", ",", "z"}], "]"}], "-",
RowBox[{"nu",
RowBox[{"(",
RowBox[{
RowBox[{"sr", "[",
RowBox[{"r", ",", "z"}], "]"}], "+",
RowBox[{"sz", "[",
RowBox[{"r", ",", "z"}], "]"}]}], ")"}]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"uu", "-",
RowBox[{"u", "[",
RowBox[{"r", ",", "z"}], "]"}]}], "//", "Simplify"}]}], "Input",
CellChangeTimes->{{3.754056471222197*^9, 3.754056485788637*^9}, {
3.754056624008992*^9, 3.754056627807664*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"52fad4c5-82e8-47e9-a4fe-ddd261521100"],
Cell[BoxData["0"], "Output",
CellChangeTimes->{3.7540564867530317`*^9, 3.7540566282713623`*^9,
3.754117860813476*^9, 3.7543708016047287`*^9, 3.754635940948731*^9,
3.755186569712378*^9, 3.7572501065425577`*^9},
CellLabel->"Out[20]=",ExpressionUUID->"9539216a-532b-488b-8e0a-671d7b814f0e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"u", "[",
RowBox[{"r", ",", "0"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"w", "[",
RowBox[{"r", ",", "0"}], "]"}], " ", "//", "Simplify"}]}], "Input",
CellChangeTimes->{{3.754054630492176*^9, 3.754054689551803*^9}, {
3.7540554687667227`*^9, 3.754055469203105*^9}, {3.754055584502749*^9,
3.754055596092216*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"a4b8f7b0-e823-40b5-be53-ffa9020f0e73"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", " ", "nu"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ", "P"}],
RowBox[{"2", " ", "EE", " ", "\[Pi]", " ", "r"}]]}]], "Output",
CellChangeTimes->{{3.7540546321517563`*^9, 3.7540546897684383`*^9},
3.754055469521289*^9, 3.7540555534608507`*^9, {3.754055585902627*^9,
3.754055616304961*^9}, 3.7540557079454823`*^9, 3.754056635593642*^9,
3.754370804782712*^9, 3.7546359425725813`*^9, 3.7551865708652077`*^9,
3.757250107422914*^9},
CellLabel->"Out[21]=",ExpressionUUID->"840f869f-9a11-4075-b684-f49b7b5bd9df"],
Cell[BoxData[
FractionBox[
RowBox[{"P", "-",
RowBox[{
SuperscriptBox["nu", "2"], " ", "P"}]}],
RowBox[{"EE", " ", "\[Pi]", " ", "r"}]]], "Output",
CellChangeTimes->{{3.7540546321517563`*^9, 3.7540546897684383`*^9},
3.754055469521289*^9, 3.7540555534608507`*^9, {3.754055585902627*^9,
3.754055616304961*^9}, 3.7540557079454823`*^9, 3.754056635593642*^9,
3.754370804782712*^9, 3.7546359425725813`*^9, 3.7551865708652077`*^9,
3.7572501074523487`*^9},
CellLabel->"Out[22]=",ExpressionUUID->"5150f748-6a87-42bd-bcfc-ef73d27b4a5e"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Ur", "[",
RowBox[{"r_", ",", "z_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"u", "[",
RowBox[{"r", ",", "z"}], "]"}], ",", "0", ",",
RowBox[{"w", "[",
RowBox[{"r", ",", "z"}], "]"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"U", "[",
RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"u", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "^", "2"}], "+",
RowBox[{"y", "^", "2"}]}], "]"}], ",", "z"}], "]"}],
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{"x", ",", "y"}], "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"u", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "^", "2"}], "+",
RowBox[{"y", "^", "2"}]}], "]"}], ",", "z"}], "]"}],
RowBox[{"Sin", "[",
RowBox[{"ArcTan", "[",
RowBox[{"x", ",", "y"}], "]"}], "]"}]}], ",",
RowBox[{"w", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "^", "2"}], "+",
RowBox[{"y", "^", "2"}]}], "]"}], ",", "z"}], "]"}]}],
"}"}]}]}], "Input",
CellChangeTimes->{{3.754054771037822*^9, 3.75405480252464*^9}, {
3.754054836516995*^9, 3.754054845373324*^9}, {3.754056650601116*^9,
3.75405671645539*^9}},
CellLabel->"In[23]:=",ExpressionUUID->"e58a95e5-da7c-46ce-be61-80f1d8b9a42b"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"gd", " ", "=", " ",
RowBox[{
RowBox[{"Grad", "[",
RowBox[{
RowBox[{"Div", "[",
RowBox[{
RowBox[{"U", "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], " ", "//",
"FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{"lap", " ", "=", " ",
RowBox[{
RowBox[{"Laplacian", "[",
RowBox[{
RowBox[{"U", "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], " ", "//", " ",
"Simplify"}]}]}], "Input",
CellChangeTimes->{{3.7540566986863203`*^9, 3.7540567469510193`*^9},
3.754371295193473*^9, {3.754635832616445*^9, 3.7546358330806704`*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"4d7f244d-922c-4959-b341-924a8947f0eb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "nu"}]}], ")"}], " ", "P", " ", "x", " ", "z"}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "nu"}]}], ")"}], " ", "P", " ", "y", " ", "z"}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "nu"}]}], ")"}], " ", "P", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["z", "2"]}]}], ")"}]}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], "}"}]], "Output",
CellChangeTimes->{3.754056748802662*^9, 3.754056805025753*^9,
3.754370920717025*^9, 3.754371297201642*^9, 3.7543793699634132`*^9,
3.754635946892672*^9, 3.755186573512566*^9, 3.757250110149865*^9},
CellLabel->"Out[25]=",ExpressionUUID->"94bb75b0-98b5-4048-8126-a3c13b9dfbf2"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ", "P", " ", "x", " ", "z"}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ", "P", " ", "y", " ", "z"}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ", "P", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["z", "2"]}]}], ")"}]}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], "}"}]], "Output",
CellChangeTimes->{3.754056748802662*^9, 3.754056805025753*^9,
3.754370920717025*^9, 3.754371297201642*^9, 3.7543793699634132`*^9,
3.754635946892672*^9, 3.755186573512566*^9, 3.7572501105946093`*^9},
CellLabel->"Out[26]=",ExpressionUUID->"d6c50889-c852-4490-8cac-34bf55d072ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"lam", "+", "mu"}], ")"}], "gd"}], "+",
RowBox[{"mu", " ", "lap"}]}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{3.754371303992385*^9},
CellLabel->"In[27]:=",ExpressionUUID->"dd52a4a9-4e09-4178-9a5e-7d113976851c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.754056749143614*^9, 3.754056806212594*^9},
3.754371306030923*^9, {3.754379364197467*^9, 3.75437937125707*^9},
3.7546359517231216`*^9, 3.7551865748627577`*^9, 3.757250111445105*^9},
CellLabel->"Out[27]=",ExpressionUUID->"8b50242a-c150-465f-a04d-1e53c4ac0906"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"gd", " ", "=", " ",
RowBox[{
RowBox[{"Grad", "[",
RowBox[{
RowBox[{"Div", "[",
RowBox[{
RowBox[{"Ur", "[",
RowBox[{"r", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "t", ",", "z"}], "}"}], ",",
"\"\<Cylindrical\>\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "t", ",", "z"}], "}"}], ",", "\"\<Cylindrical\>\""}],
"]"}], " ", "//", "FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{"lap", " ", "=", " ",
RowBox[{
RowBox[{"Laplacian", "[",
RowBox[{
RowBox[{"Ur", "[",
RowBox[{"r", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "t", ",", "z"}], "}"}], ",", "\"\<Cylindrical\>\""}],
"]"}], " ", "//", " ", "Simplify"}]}]}], "Input",
CellChangeTimes->{{3.75405513631394*^9, 3.754055175108973*^9}, {
3.7540552877319736`*^9, 3.7540552898104477`*^9}, {3.754056692994125*^9,
3.754056723636969*^9}, {3.7540568157797813`*^9, 3.754056817879846*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"93b799ba-0e6c-4c5a-b3e7-677fffe55c18"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "nu"}]}], ")"}], " ", "P", " ", "r", " ", "z"}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], ",", "0", ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "nu"}]}], ")"}], " ", "P", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["z", "2"]}]}], ")"}]}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], "}"}]], "Output",
CellChangeTimes->{
3.75405492690821*^9, {3.7540551323588*^9, 3.7540551756920233`*^9},
3.754055291322709*^9, 3.754055556810151*^9, 3.754055619065543*^9, {
3.7540567984285803`*^9, 3.754056820252576*^9}, 3.7543713104134073`*^9,
3.754635954097196*^9, 3.7551865764758253`*^9, 3.75725011269969*^9},
CellLabel->"Out[28]=",ExpressionUUID->"401baccf-e769-4f27-a81d-a53016d20b8f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ", "P", " ", "r", " ", "z"}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], ",", "0", ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "nu"}], ")"}], " ", "P", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["z", "2"]}]}], ")"}]}],
RowBox[{"EE", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}],
RowBox[{"5", "/", "2"}]]}]]}], "}"}]], "Output",
CellChangeTimes->{
3.75405492690821*^9, {3.7540551323588*^9, 3.7540551756920233`*^9},
3.754055291322709*^9, 3.754055556810151*^9, 3.754055619065543*^9, {
3.7540567984285803`*^9, 3.754056820252576*^9}, 3.7543713104134073`*^9,
3.754635954097196*^9, 3.7551865764758253`*^9, 3.757250112996279*^9},
CellLabel->"Out[29]=",ExpressionUUID->"6af93acb-ad04-49c7-bbcc-78756dde92d6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"lam", "+", "mu"}], ")"}], "gd"}], "+",
RowBox[{"mu", " ", "lap"}]}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.754055181305574*^9, 3.754055256304257*^9}, {
3.7543711803964567`*^9, 3.75437123446726*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"e660f364-fb0b-47e6-9aa9-39e22a671049"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.7540551839580183`*^9, 3.7540552741638613`*^9},
3.7540555583796673`*^9, 3.754055620746636*^9, {3.754056806566188*^9,
3.754056821780911*^9}, {3.754371189976132*^9, 3.754371235165863*^9},
3.75437131726385*^9, 3.75463595530132*^9, 3.755186586344874*^9,
3.757250113502211*^9},
CellLabel->"Out[30]=",ExpressionUUID->"98c6ec1f-4c5a-4b43-bf16-e3a0473b086f"]
}, Open ]]
},
WindowSize->{1920, 1006},
WindowMargins->{{0, Automatic}, {4, Automatic}},
FrontEndVersion->"11.3 for Linux x86 (64-bit) (March 6, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 2805, 86, 334, "Input",ExpressionUUID->"ba229dd5-ce07-4e83-82d7-910597da5e23"],
Cell[CellGroupData[{
Cell[3388, 110, 3220, 106, 274, "Input",ExpressionUUID->"c0887786-553a-4583-a695-e7207ae57473"],
Cell[6611, 218, 3702, 112, 218, "Output",ExpressionUUID->"2b134d5e-24c5-4c37-9af9-583b33e8d795"]
}, Open ]],
Cell[CellGroupData[{
Cell[10350, 335, 404, 10, 31, "Input",ExpressionUUID->"9ff14b20-2357-479e-be54-54f97cdc2715"],
Cell[10757, 347, 424, 7, 35, "Output",ExpressionUUID->"a70426ab-ea32-4886-812d-2b880834c406"]
}, Open ]],
Cell[11196, 357, 2267, 65, 193, "Input",ExpressionUUID->"6a668b9e-2924-46e5-862d-4f5c974dda1a"],
Cell[CellGroupData[{
Cell[13488, 426, 774, 23, 55, "Input",ExpressionUUID->"52fad4c5-82e8-47e9-a4fe-ddd261521100"],
Cell[14265, 451, 295, 4, 35, "Output",ExpressionUUID->"9539216a-532b-488b-8e0a-671d7b814f0e"]
}, Open ]],
Cell[CellGroupData[{
Cell[14597, 460, 439, 9, 55, "Input",ExpressionUUID->"a4b8f7b0-e823-40b5-be53-ffa9020f0e73"],
Cell[15039, 471, 675, 15, 55, "Output",ExpressionUUID->"840f869f-9a11-4075-b684-f49b7b5bd9df"],
Cell[15717, 488, 557, 11, 59, "Output",ExpressionUUID->"5150f748-6a87-42bd-bcfc-ef73d27b4a5e"]
}, Open ]],
Cell[16289, 502, 1499, 46, 55, "Input",ExpressionUUID->"e58a95e5-da7c-46ce-be61-80f1d8b9a42b"],
Cell[CellGroupData[{
Cell[17813, 552, 948, 25, 55, "Input",ExpressionUUID->"4d7f244d-922c-4959-b341-924a8947f0eb"],
Cell[18764, 579, 2080, 62, 66, "Output",ExpressionUUID->"94bb75b0-98b5-4048-8126-a3c13b9dfbf2"],
Cell[20847, 643, 1729, 50, 66, "Output",ExpressionUUID->"d6c50889-c852-4490-8cac-34bf55d072ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[22613, 698, 306, 8, 31, "Input",ExpressionUUID->"dd52a4a9-4e09-4178-9a5e-7d113976851c"],
Cell[22922, 708, 373, 6, 35, "Output",ExpressionUUID->"8b50242a-c150-465f-a04d-1e53c4ac0906"]
}, Open ]],
Cell[CellGroupData[{
Cell[23332, 719, 1095, 27, 55, "Input",ExpressionUUID->"93b799ba-0e6c-4c5a-b3e7-677fffe55c18"],
Cell[24430, 748, 1533, 44, 66, "Output",ExpressionUUID->"401baccf-e769-4f27-a81d-a53016d20b8f"],
Cell[25966, 794, 1300, 36, 66, "Output",ExpressionUUID->"6af93acb-ad04-49c7-bbcc-78756dde92d6"]
}, Open ]],
Cell[CellGroupData[{
Cell[27303, 835, 380, 9, 31, "Input",ExpressionUUID->"e660f364-fb0b-47e6-9aa9-39e22a671049"],
Cell[27686, 846, 472, 8, 35, "Output",ExpressionUUID->"98c6ec1f-4c5a-4b43-bf16-e3a0473b086f"]
}, Open ]]
}
]
*)