You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

760 lines
35 KiB

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 0, 0]
NotebookDataLength[ 36052, 759]
NotebookOptionsPosition[ 34512, 721]
NotebookOutlinePosition[ 34846, 736]
CellTagsIndexPosition[ 34803, 733]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Define", " ", "solution"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"r2", "=", " ",
RowBox[{
RowBox[{"x", "^", "2"}], "+",
RowBox[{"y", "^", "2"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"theta", " ", "=", " ",
RowBox[{"ArcTan", "[",
RowBox[{"x", ",", " ", "y"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"factor", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "P"}], " ", "/", " ", "4"}], " ", "/", " ", "Pi"}], " ",
"/", " ", "mu"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nu", " ", "=", " ",
RowBox[{
RowBox[{"lam", " ", "/", " ", "2"}], "/",
RowBox[{"(",
RowBox[{"lam", "+", "mu"}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"kappa", " ", "=",
RowBox[{"3", "-",
RowBox[{"4", "nu"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"u", " ", "=", " ",
RowBox[{
RowBox[{"factor", "*", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"kappa", " ", "-", " ", "1"}], ")"}], "*", "theta"}], " ",
"+", " ",
RowBox[{"2", "x", " ",
RowBox[{"y", "/", "r2"}]}]}], ")"}]}], " ", "//", " ",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{"v", " ", "=", " ",
RowBox[{
RowBox[{"factor", "*", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"kappa", " ", "+", " ", "1"}], ")"}]}], "*",
RowBox[{
RowBox[{"Log", "[", "r2", "]"}], "/", "2"}]}], " ", "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "^", "2"}], "-",
RowBox[{"x", "^", "2"}]}], ")"}], "/", "r2"}]}], ")"}]}], " ", "//",
" ", "Simplify"}]}]}]}]], "Input",
CellChangeTimes->{{3.714330574744076*^9, 3.714330681283854*^9}, {
3.71433540346075*^9, 3.7143354097483597`*^9}, {3.714335584168417*^9,
3.714335593495672*^9}, {3.714335813154286*^9, 3.714335941647197*^9}, {
3.7143376271969423`*^9, 3.714337725857449*^9}, {3.7143378975179367`*^9,
3.7143379187253523`*^9}, {3.714338646092629*^9, 3.714338666257785*^9}, {
3.714338700265992*^9, 3.714338703264728*^9}, {3.714338865285348*^9,
3.714338879460565*^9}, {3.7143390041131907`*^9, 3.7143390118570538`*^9}, {
3.7143391529656963`*^9, 3.714339176716791*^9}, {3.714339240227582*^9,
3.7143392905135307`*^9}, {3.714339527172599*^9, 3.71433954346741*^9},
3.7571383675415277`*^9},
CellLabel->"In[1]:=",ExpressionUUID->"6edfd4fb-eab5-4a9e-91e2-a1e526fb4c42"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"P", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"2", " ", "x", " ", "y"}],
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], "+",
FractionBox[
RowBox[{"2", " ", "mu", " ",
RowBox[{"ArcTan", "[",
RowBox[{"x", ",", "y"}], "]"}]}],
RowBox[{"lam", "+", "mu"}]]}], ")"}]}],
RowBox[{"4", " ", "mu", " ", "\[Pi]"}]]}]], "Output",
CellChangeTimes->{
3.7143306826041822`*^9, 3.7143354107026253`*^9, {3.7143355875099688`*^9,
3.714335594037971*^9}, {3.7143358314234867`*^9, 3.714335856478866*^9}, {
3.7143359074619207`*^9, 3.714335942793187*^9}, 3.714337433248798*^9, {
3.714337636465268*^9, 3.714337726025775*^9}, 3.714337824166453*^9, {
3.714337898283264*^9, 3.71433791951038*^9}, {3.714338651501628*^9,
3.714338666615934*^9}, 3.714338703775033*^9, {3.714338866192771*^9,
3.714338879808248*^9}, {3.714339005370722*^9, 3.714339012160644*^9}, {
3.7143391589027767`*^9, 3.714339177025845*^9}, {3.714339224585134*^9,
3.714339291054723*^9}, 3.714339352056959*^9, 3.714339469194803*^9, {
3.714339523642091*^9, 3.7143395338330317`*^9}, 3.714345038518002*^9,
3.714345087131925*^9, 3.714375700971623*^9, 3.7143944127926702`*^9,
3.757138368441208*^9, 3.757140518228003*^9},
CellLabel->"Out[6]=",ExpressionUUID->"df27b1eb-bc8b-4fd9-8b03-d67281dbd1da"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"P", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-",
SuperscriptBox["x", "2"]}], "+",
SuperscriptBox["y", "2"]}],
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"lam", "+",
RowBox[{"2", " ", "mu"}]}], ")"}], " ",
RowBox[{"Log", "[",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], "]"}]}],
RowBox[{"lam", "+", "mu"}]]}], ")"}]}],
RowBox[{"4", " ", "mu", " ", "\[Pi]"}]]}]], "Output",
CellChangeTimes->{
3.7143306826041822`*^9, 3.7143354107026253`*^9, {3.7143355875099688`*^9,
3.714335594037971*^9}, {3.7143358314234867`*^9, 3.714335856478866*^9}, {
3.7143359074619207`*^9, 3.714335942793187*^9}, 3.714337433248798*^9, {
3.714337636465268*^9, 3.714337726025775*^9}, 3.714337824166453*^9, {
3.714337898283264*^9, 3.71433791951038*^9}, {3.714338651501628*^9,
3.714338666615934*^9}, 3.714338703775033*^9, {3.714338866192771*^9,
3.714338879808248*^9}, {3.714339005370722*^9, 3.714339012160644*^9}, {
3.7143391589027767`*^9, 3.714339177025845*^9}, {3.714339224585134*^9,
3.714339291054723*^9}, 3.714339352056959*^9, 3.714339469194803*^9, {
3.714339523642091*^9, 3.7143395338330317`*^9}, 3.714345038518002*^9,
3.714345087131925*^9, 3.714375700971623*^9, 3.7143944127926702`*^9,
3.757138368441208*^9, 3.757140518265328*^9},
CellLabel->"Out[7]=",ExpressionUUID->"ebbede69-3871-4b56-a189-63bc1467f375"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Check", " ", "solution"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"uu", "=",
RowBox[{"{",
RowBox[{"u", ",", "v"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"lam", " ", "+", " ", "mu"}], ")"}],
RowBox[{"Grad", "[",
RowBox[{
RowBox[{"Div", "[",
RowBox[{"uu", ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}]}], " ", "]"}]}], "+",
RowBox[{"mu", " ",
RowBox[{"Laplacian", "[",
RowBox[{"uu", ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}]}], "]"}]}]}], " ", "//", " ",
"FullSimplify"}]}]}]], "Input",
CellChangeTimes->{{3.714330699661118*^9, 3.714330735874028*^9}, {
3.714331075017496*^9, 3.714331087653536*^9}, {3.71433111922513*^9,
3.7143311207725573`*^9}, {3.71433916014937*^9, 3.7143391607330427`*^9}, {
3.714339536931958*^9, 3.7143395475235023`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"07483dbb-7eac-4421-a2d8-38b8a0d54105"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.7143310825231447`*^9, 3.7143310881226377`*^9},
3.7143311211657047`*^9, 3.7143312457807007`*^9, 3.714335415127261*^9,
3.714335589227791*^9, {3.714335832556938*^9, 3.7143358576254177`*^9}, {
3.714335932242242*^9, 3.714335944745008*^9}, 3.7143374346853447`*^9,
3.714337650060575*^9, {3.714337694215692*^9, 3.714337701183051*^9},
3.7143377370266542`*^9, 3.714337927572188*^9, 3.714338553921102*^9, {
3.714338653007408*^9, 3.7143386692545137`*^9}, 3.714338705330412*^9,
3.7143388215104303`*^9, {3.7143388678260813`*^9, 3.7143388768488607`*^9}, {
3.714339008945838*^9, 3.714339013487381*^9}, {3.7143391612381773`*^9,
3.714339170506323*^9}, {3.714339254708292*^9, 3.7143392922191963`*^9},
3.714339365801826*^9, 3.714339473358878*^9, 3.714339548050552*^9,
3.7143450390046177`*^9, 3.714375703576548*^9, 3.714394413253394*^9,
3.757138370605645*^9},
CellLabel->"Out[9]=",ExpressionUUID->"e93ee93b-1333-4319-a8f6-4f481e7d0aa2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Derivation", " ", "from", " ", "polar", " ", "solution", " ", "found",
" ", "on", " ", "Wikipedia"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ur", " ", "=", " ",
RowBox[{"factor",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"kappa", "-", "1"}], ")"}], " ", "theta", " ",
RowBox[{"Cos", "[", "theta", "]"}]}], " ", "+",
RowBox[{"Sin", "[", "theta", "]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"kappa", "+", "1"}], ")"}],
RowBox[{
RowBox[{"Log", "[", "r2", "]"}], " ", "/", "2"}],
RowBox[{"Sin", "[", "theta", "]"}]}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ut", " ", "=", " ",
RowBox[{"factor",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"kappa", "-", "1"}], ")"}], " ", "theta", " ",
RowBox[{"Sin", "[", "theta", "]"}]}], " ", "+",
RowBox[{"Cos", "[", "theta", "]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"kappa", "+", "1"}], ")"}],
RowBox[{
RowBox[{"Log", "[", "r2", "]"}], "/", "2"}],
RowBox[{"Cos", "[", "theta", "]"}]}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ux", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"ur", " ",
RowBox[{"Cos", "[", "theta", "]"}]}], " ", "+", " ",
RowBox[{"ut", " ",
RowBox[{"Sin", "[", "theta", "]"}]}]}], " ", "//", " ",
"FullSimplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"uy", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"ur", " ",
RowBox[{"Sin", "[", "theta", "]"}]}], " ", "-", " ",
RowBox[{
RowBox[{"Cos", "[", "theta", "]"}], " ", "ut"}]}], " ", "//", " ",
"FullSimplify"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"u", ",", "v"}], "}"}], " ", "\[Equal]", " ",
RowBox[{"{",
RowBox[{"ux", ",", "uy"}], "}"}]}], "//", " ",
"Simplify"}]}]}]], "Input",
CellChangeTimes->{{3.714337042116043*^9, 3.714337112177801*^9}, {
3.7143371449126387`*^9, 3.714337148784019*^9}, {3.714337349843248*^9,
3.7143373501707573`*^9}, {3.714338449151935*^9, 3.714338450095187*^9}, {
3.7143394481179934`*^9, 3.714339452174026*^9}, {3.7143394907495728`*^9,
3.714339514347926*^9}, {3.714339549523665*^9, 3.714339569539114*^9}, {
3.714339631721285*^9, 3.714339632009182*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"cd856b76-9e9b-4dc8-81e2-9c7bdaaa1494"],
Cell[BoxData["True"], "Output",
CellChangeTimes->{3.714339569984548*^9, 3.714339632518272*^9,
3.7143450393973*^9, 3.757138372356902*^9},
CellLabel->"Out[14]=",ExpressionUUID->"e4e9a366-b01c-4214-9f82-f8cf41287587"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Plot", " ", "solution"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"data", " ", "=", " ",
RowBox[{"First", "@",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"mu",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", " ", "lam"}], " ", "+", " ",
RowBox[{"2", "mu"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"lam", "+", "mu"}], ")"}]}]}], " ", "\[Equal]", " ",
RowBox[{"72.1", " ",
RowBox[{"10", "^", "9"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"lam", "/", "2"}], "/",
RowBox[{"(",
RowBox[{"lam", "+", "mu"}], ")"}]}], "\[Equal]", "0.33"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"lam", ",", "mu"}], "}"}]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"data", " ", "=", " ",
RowBox[{"Join", "[",
RowBox[{"data", ",", " ",
RowBox[{"{",
RowBox[{"P", "\[Rule]",
RowBox[{"500", " ",
RowBox[{"10", "^", "7"}]}]}], "}"}]}], "]"}]}],
"\[IndentingNewLine]",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "+", "u"}], ",",
RowBox[{"y", "+", "v"}]}], "}"}], "/.", "data"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "0.1"}], ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.7143381179611263`*^9, 3.714338248892179*^9}, {
3.714338323250383*^9, 3.714338366309795*^9}, {3.714339583826398*^9,
3.7143396067147923`*^9}, 3.7143415881518707`*^9, 3.75713838532057*^9},
CellLabel->"In[18]:=",ExpressionUUID->"4270a92a-bdc9-4330-9a7f-f0800e49dcdd"],
Cell[BoxData[
TemplateBox[{
"Solve","ratnz",
"\"Solve was unable to solve the system with inexact coefficients. The \
answer was obtained by solving a corresponding exact system and numericizing \
the result.\"",2,18,2,33140951098835837170,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.714341584538748*^9, 3.714341588888633*^9},
3.714345039571536*^9, {3.757138377551591*^9, 3.7571383858757753`*^9}},
CellLabel->
"During evaluation of \
In[18]:=",ExpressionUUID->"8273a972-74d3-498d-b170-44c15132a30c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"lam", "\[Rule]", "5.261609907120743`*^10"}], ",",
RowBox[{"mu", "\[Rule]", "2.7105263157894737`*^10"}], ",",
RowBox[{"P", "\[Rule]", "5000000000"}]}], "}"}]], "Output",
CellChangeTimes->{{3.714338200561962*^9, 3.714338213807086*^9},
3.714338249549588*^9, {3.7143383257588654`*^9, 3.714338366591443*^9},
3.714338464213398*^9, 3.714339298461061*^9, {3.714339580448917*^9,
3.714339606996037*^9}, {3.714341584847927*^9, 3.714341589015427*^9},
3.714345039700823*^9, {3.757138377572678*^9, 3.757138385951499*^9}},
CellLabel->"Out[19]=",ExpressionUUID->"72269c86-e6e2-46b9-b072-61bf12a4d461"],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxFV3k8lN/3j4o2LZYSKlkSIVoo240kSaUNFYqKkq1SWihkaVFIIYRUEkKU
nTOYwQzGjDFmjFHZ15A28ZHffF+v+/T7Z+Z1X+d5n/N+n+ee93PvWifPQ2eF
Z82alSr4+d//9+16s58WjEKmaMX9/RGjkCy2grFebQiuFgc+fVE0CvzFLa2z
43qBbN/g+7h7FI6dtfnAndsJ8uat7pWiYxBWteN7JZcHu4QnfDpkx6CtrFSr
7hkTnCw7bhSrj8EvX/XSpCQSPJFzF5beNgasDuGvVosjkJnmBhd5gzG4sNX9
9+aXZETEpWTs9z+NZyECX72mY+lDHh8R+a9GqVSViXQhov6kQWp/f1wfIviV
6/d9EtswjAj+C7bMnW9oN4YIfZ3nONviPoyC754AWbGgr2D4NzvDdf0QqJt/
2iKf/RXyOrbLpj/rhaEtWYsC+F9hnoZILkekE6zIn26nLBgBsY7DKdl8Hizz
tM57rTMCr7/c1VybyIQ6jkOVqt0I+NyZ33T4NQkuUd2/cq+M/NMr8vVx8/zb
IzCkbyHWn0ZGRPyzgarlUBILEXhzwx9w/RMfEfmVT7SQSkW7EFGfsWSBWrhA
L8HvuLp/8QHVYaSB+QfWsV7C8TFE6NPQS2BzckYhMGzc0sRnCBSqn6T/UB6C
4WePf4q+GgKNjWL5ENsLcgb20MEagnIf8chg0U7oOaYjfnbuMHxz3zv06AsP
Avb+bn62dRjelg4nsVOYoD71S+LhyWHY9yv3FDWDBA5Vdfwa3+F/ei9OmGsf
Cx2Gyqzv8fbZZETEu6UfliW9YiECr04bmnesk48CcX7+684k13ldiKhvYd9O
fvWsDxH80I8zRa3rhhHBX2WLzqVPtmOI0Oeyx3i5ZuYopJ9UaOg5PwAnSpa9
SFIYAlk1aoxZ7ADoekpbyMT0wi/a1axo2gCU7hcqLRPonT8i1Z86MwDljcaP
tnfzwFU6w9R/yyC4rJYaGHzDhM6Nk+LPTw/CdVqUpkoeCcp33tFVCh78pzfx
3gGKa+QgjAQ2ny/JJyMinnLjo8jHtyxE4P9s6MyY3ctHRH6eL5OWItBL1D/6
vN92JqYPEfyuD3RkBykOI4I/ueTu43vWY4jQt2sNg3sjdRS4pTlG4yf64MTF
4/FGq4dgYU9ccN2DPnAnca8HP+mFLS8rVviT+mDQ2LJyv0DvWXnZSr0/fdBn
JPLyUh8PZKO//NDY3A9NSmsH7N4x4Xl/9Qqrc/1wJs1ONLGEBIOd0g9lwwVx
rHftzq6T9573Q+up5yabgIyI+KKAChGVbBYi8GvjU0kGA3wkh/PP85Jjbhbo
JerfH0m76/q0DxH8riWppSuuGUYE/7x1jO/Zh8cQoU9zojMmLmkUnsRZeDjv
64HH3mKGSdJD8Hg+9fG9Wz2waOPlFxURvSBzyV/s1sceMGv2vv5L4FdREh6k
oW89EEZxrOEP8IDhvfXAOe1e2K9r2ySTx4T594Wqw9174da++msXKCSYfZiz
vlPge4Ted5WZqpKZvTA+V+zDTC0ZEfG7UROj3R9YiMBXrxXuSR3iIyL/aeFd
d9sEfkXUV7PfmZMa2YcIftkp7XuDVg4jgr9K1DEWshpDhL5ukszv8zGjoE32
eGFm1AVaQ3u/3l82BHp7w7Zf9+qCMAcbrTsPeqHysone5bdd0HuBF24/uxN2
+dhE3hroglSHTTsGB3ngpTNj2aHZDabCJv1ThUzooyR7aV/uBnrGh1o+gwSx
x7aO56Z1/9P7RwuRQ8q6YeeZn7MvNpMREb/l0Dm3upiFCHxHcZP9h2E+IvLP
jktPNJnThYj6b8NU0LmwPkTw27dS7j9P8WFE8A/0+RmoYjmGCH1z71RN1jwc
hRVkE/5zzQ5IWdqrQp03BG4um3fEO3aA2ePEI5eDekHb89yUeUIHRFk7qkjM
dIBzaXLth88d8Phmun214P1KnpkU3bKhE45qdLHTy5kQ7JLsMHitEzTpyj+s
PpFgKPalT0NhJzCx3npT56Hgpk54GeK8saeDjIh4+L07371JLBSC8fUci5sR
gvdL5M8J0taZmOlERP3TJI/TtsF9iOAHRvk6WfOHEcE/iksNst49hgh9p8cW
/IwNFPhV3aemaYNPMHKQb6n4dxBC+j5L/H75SbC/zL9vutkLx7mv2AOynyG2
RY9zb6IDFAIu6L9J+wzhplOLdHt4cDpEp7xL+QucsdTNu13FhPEkspnRrS/w
prOqausICTi+IV6edV/+6X055Pfn+9AXkI2fM0P9RkZcHE9M4zD2UFjoO8bT
kuPVhPr4iMifP2dhr8efTqSI67+ukBaW9u1DJzC/hf6ZJ+bNDKFQzN8k/KsQ
GAv8CuvzNJVZTrsyCtbVDsXz5XiAFs1Xd/02COWem7e53OFBQtikoqNnLzye
Sl028x8PuvzyC6VHO4DGv1Xi8KgN1l8PcbjWxgPt9o8JlQZ8IDnPkPSqmaAZ
NTrZMKcdYgeKw77PqoAbT476h1S0/9O7+d1a5fXLP8GilKma0DkUdBPHJyuT
Ps2pZSECf5q9zteknY+I/LMyQ2qmRztRHa5fVEzbZObVhwh+dnqtegfGhxDB
33z7lcc2+mOI0HdNoffUUZdRGHDxD349yYY6TxcTv85BoOuN7eQ6toDO6Uzb
1FO9IB6cNCPFb4HWi5q1czo7IEx+7qFrXhzwPmbSJkvjgVabmLbBei6s7znb
dI/MhNpZc7u95rXCyJn9N5OXV4D9MlN3l2+twMB6fV3azZ+e5oHTqvD8LTIU
5IDjTsYiY4erWYjAZ3/snOip4yMi/6+kvy0DnZ3oIa5/ONLX5YFjH5LA/Pqf
6x506hpCBP9969t0V20ZQ4S+r4M9EbtsRsHzMvmIUisTJmOPrT7MHAThvLbl
RagJpm+UppH3C/ZzjfBMdlETDH7OXx/L6ICK+Lo40wMsSDPYt0A0iwd54Q71
rmLNcGw8IHtHMRNaOKfyleawgR85zZ/SqIDUesX6/5Ra/untf5+laljdAlYW
RtIR2hT0Bsej9is0LChlIQ7Gd8V+VWFm89EHnF90caiuH7MTEfVl3oYVvD0g
2M+Y34oaVY1tTUOI4B+6qO2AlPoYIvSdnFi9p2jXKGQrLiqp8KyDMY2QXKHy
QXh+6/f7Nfr1kCsWsiBzey8Yh75evkKjAVbo/6bvLRb42OqJ+B02dDBfdtit
VrBvAk+e+EvhNsIirdo/NslMqKF7Nqn9YMDir/Gms40rQM05IdTapgnoWG/T
jWNfi8xZcOc1/3aMKQWp4/jusHMrFFIE7xfj77h/v/c4mI+CcP4t52vatUo6
0W5cn6FvvTJSrw+ZYH5idtYVveVDKBHz3xH1e8MBxTFE6CthV1V3bxoFrxVz
Vl7QrALDxTK55LRBsBzsfM/7XQV6BzOSH63thclXGTtU+8jAvBJTKpTUAYMO
dbm/xarhyEragUfmPPD2WVB16WENqHxsUXrkxgSpHC8tjUwqKHsuUY/dXgFr
hu8EXP9dD/VYr55wntKRWQyIU7FyUTekICUcd1zmY2LrwULSGB9+xdXd1oKP
ruD8Iy9d6nqTOtEQrm9z+2b2ZYU+NIX5HTcYJL19O4QI/iNCtMHulWOI0Bd0
MPfksjWjQMl4rFPf/hGa39SVzAjOefqH0q0uuBeAuGe+34hIL9Rk6Acs2F0E
W77cfb/jdgc0KN+LeRdWAhvuKAi1TbXC/ozKKZnb5TDLcdTzrCQTOpS+JBod
q4DCKokIcyYJChNG3iV9J0MN1vtlFdlK1owGmr5H6viC728pjuuXhT/cuJyF
ujDe+XPl6tfTbeggzn9w8TGSsn8nasT1tZ6HhLFE+xAV8/vGjqd1Px5Chpg/
CxnrTi0ZQ4Q+IYqyXak1DVolS1bqn2+HZcy7aT6qWfDEsaYqdqYdLrZSLLpl
C9BTvL7q5xxjdZyOePj5Kk9ekJLAj7deSxc+I9oGyR0HymIsWqC0LLciJ4oL
jD0Pci4trIBx47DRNm4brIgYUn56mgbhU4FyqgGt//x6Wmm/VboeH/JdWvU6
3bLgzfOiQxdN/3fPrB8SWUJB3zGerDQS9cywABHxv3U3UkZqWEgH1w8zV3dU
daGjCJyfZzjGc7TkIoKPKFvualKZ4Dw4KFueItsCX6OupDWTBN/PcpvXQaIc
IPGNkxu3tkBvxyPpP/7NEC+flrVHoQIO7iH5DS/ggsdFmbdkFxpMi23iHHzC
/udH6y7t3VEeyYWlWX3R0zVZEHXrd0R8bAssbe0faFemoEMYP7b7p7HKhQL0
BMdVxqSqEysF319cv0v1RLftBTr6i/ObaJdFnQc+YmK+k9s6y57pclEf5rek
uW9lZxwP6k32r0yaZsKivM86rGwm/HEJOcCeboIkCY1lSstaQNXLQ1vrLAP8
eiUMG7dVQNm8oIk2o2bwKkBSMUdpkJQd7nU1gfnPbxqtpDoeCLNBS3XWzjNm
2aB+9b1Y30wTfEs8cu20AQWVY7x/sFDs8fQCpInju5f4H3n+noUmcf0eT3+r
DcfoKBnn36N1VzczgY8aMF+eZ4PmiDgXqWF+9GqDfOdzPLgdsvX517w6ePz2
isP5+0yQ2+jRQmtoAO+v39MpLWwo2LGR2R1QC2NznMX37qwA7zv2m8LcGKBQ
8YcTu5QGC9+d8zNUqPunR+eLf1lNPBOkdb69efEtG7pCDifKTdDhbFnqvs9m
FHQF438svGHxZ6YA9eJ4w9zlvpvDWGg1rh97XU9CQ5KOFuP88xXbWVqufOSP
+WbveVIbzuWgIswvPnT2QTMlHvj2i6hbOFcBRf5+gs8uJlwcmZUVFUSBXyXP
pTXvsOHO+YORJ7VIoBxsGG+2sgLSyq6ovxGmQs0XY4OE81RI9PQzf8WrhDqs
J23VraXi/9UDWWN1OtswB8oVkhc4/a6BOMNbLTw5CsrE+KzEJPm/poWIjOOz
/NSKjXez0GVc3+BZoI+WewN6gfOzu156LF3HR36Yr7a0kc5EEAcFY35655fM
lNvT4H1AV3nglTbQpO5NrTHPghvLUjMOy/PB/+ibPWEbChCxfrfWSu+wIx0R
z4fr60SzjAVzYbK159yDFoi+a1xgL5gnE+Hkj2kPOEDtcFLmRmfBLK+ZE6fc
uNDQsenek0MFSAivFxgHjn9zpaOdxPMxLXnPd3LRMpzPyDankq3cAk4ybzwN
vZsgc57TIN2JBqsbqLq74liwqWwkalgoGxLVPHtTqM0Q0HiNtPpuAUrCa/mK
FOXTznQkj5+/9sHqS5IKF53G+ciXnTKnf7Ehuuyy0eibelAT8++cbUCD7znl
UQGbG2GZ0o6c3OhsaNxn6PJEnwljgS/oAU0FiIHXSRTSqlhER7/w838bhWk1
ExwUi/PVa41XKOaw4ZKaN+XmMTJkGOgMZNVTIe6TwsoNc2qgIKC32mhdDrge
f5l90K8OksddDF00CpEHXsv/vKq0k9GAEvHzIg8ff/76noO8cb4Vus/+rs2h
gKXQaHxhTDvk5lNXWWlGw6ij/LsLSz/B1k63gHFLEtocIxRH7haclztalJ19
mWhw8vV/FN12kNq2wNFW4Pd/jd/l7BThg8RR56DCec3w+3Wlg2wDF1rG5F7K
ilTAoesa4vMa+JCz/XNsXSUFetNd7X1K/t/vhy/LevWptIPH+pIbatejwbHJ
ZN3zEzyweGv/KXu+wC8xPmDCM2KFEwnp2izvXCHPA6sn6bcUBOf3GVzf1UlC
/+8tJnp8xvx2h2krxBQZv3kTxkMvpJhZaXZcMN7QLqlH5gHYaCgqKnDgw0xT
8nQlE2hjQs7G87hgtovi2TjBgvKTvXbJpGbIO5rY6ipXAQyl5bpL/3JBW44d
v66JAmVmHKnp9v/3e90F8o7j11sh1l9iVL8rGhYaQa5HscDPF3+WnFlDQUyM
d57K/mHtS0LBivU9E2daYPTE5fIaMgvV4fqyek862m4w0dKyxX5L9rLhZqjf
pjnVfETCfF/0jW5mXeYhkxsLKsx2NcOjWLc/w694kLLRi/txLgs2eP8Rj/nI
hJUTPw46CTWDnk6iMJnLAp6uQ2rSWwa8rXQiRW+uANpg4EnhTWwA7vk0DxYF
5ii/Wdk+wfynp3ala/e+LjbErraoMgmKgbJp281+W1mw+ubLKTVdCiLwTaXp
uv/FkdDVFEnyktwmcGY803IsYCEZXD9b/Idt5jkmauZGP1cT+Bz1x6IVBal8
9BLzlTbMj2Dv5aGbq6Y3HljHgOiimgevrvLA30HdKb66AbY751aYRTPhUpRD
1J+2RthkxPqTm8yCAtT5SmoJFe5URx/WEvh9ksTYQX8nJthZdApfS6fA4tnD
Pz/Pqv/n9+YxlREuXk2wb5XNMrfIWPjW0LbjZkEjTNziPCIL/D4Z42N/z9tC
zyOh2ZyXJcrTDXC58tDnpbEsdAXXH+7O/sDRZ6ITCaqNanY0YEide+txjY8C
MN+J5shfj5bykI7ioOUi4VroPvDL9KcOD3IS/1Pquk6BmSEXMf3jTFBNVZac
/awGel7ka5tasOB8sczPHaUkkHTdpqkmuN80+bdcHp+hgXqI2Kdv0oJ5QQ4j
N+hV/87D1RsjH5ZdpUN4f+z25XfjwIi6d1HfAyrcU7h+vlyLgpox/m1y7E/b
MBJKlAvft9GmGvTM522Ya8dC6ri+6b3/oqW7GeiO2Xzx/oWVsCYz2gm28VEu
5jthWDfrMKkVma92znt6BuD2Qvel237SYQDPf8Bh27DSx4WwCfuDalnf1DXl
DET4x4PR1u35eVS0D/sLKYixJoLChN7bwrsV5gnuz/Yv7rXf50Iyns83rO39
P5dWwMeAAtp0Nw8cFvXqnZukQySeZ8IvJlRL0kP2t8FKf4d0kbJC0MF+IBd2
Q/G+JAUReNGrp9R6LTKQE/aTyS9ehscF58M+XF95fE3zyWoqIvxo33uRlMAF
LWgC+1dVOoVnmM+Dd0aTbsWSgnnc3cX5UcaEzzd8hTaItIDzgwPL518S+Aqe
Rzb9fKD6+gqQ+OpNGV7BgYqSvlDFcToswfNM8Ld7P75qdQYHuoM/XQr+VghB
2A8sQtPLSBsoSBLj5VLCukduZyDCT/Jf3vlZLji1f8H1U5ulOMVsKirHfjQt
4jwhWshHWZhvwIuzD59NshFgP+u6KVTUGs6D1g6tug0/GXD72oOi+jQmFKs2
tnv9YUL7F6nLCy24cAPPoxLMbj5rKLinDDyVPbmXBQNub66SG+jQhOeZmK9N
dvskjZSaoWRe80SjZhEQfhDrY7pkcgcFFWG8zLc3+y8xMhDhJ0XNGzjR6SxU
gutviUzvEuZQ0VzsR6u5L1peRvIRD/O98thI/hGPjdqwn+mc+WS34BgP0h+9
sGlJpoKKU5phhC8TlMxvhrLK6qDs2jcueTEXtuB5zCoMtry+Q7C/7HtntgzS
4fSyNZqy3nQ4hue5AevZb9Cq61vHAPNbEd8unyqCWdgPlC5Wh4oJ7tuFGO/t
lfVTxCYTfcd+4lRufuL4LRZSwfWZwopGi7KoaBn2o4ukWzeaj/NRJubrFnd5
hV8KGxVhPztu9db84VIefASPJfWHKsBqxEpCW5MJry8eHdLyrIKyDrWuu+Uc
2IXn0d0l5GrkFAniUtmBxX+rQfx44XgCuQH88TzTsJ7K7XfuJjypE/hztve9
ZUUQi/2ga03Ne+UZMkrEeAnrxvl2h94hE+wn9y2+aU1tZKE3uH6K0f6VIXJU
NID96EnmHmcbcT7Kx3zl/1ofWGzJRhewn9Wm+XEfFFHAUXb3Xv+3bSB1ReGh
7XGBbz7dqunmyQfh8ReBbadosK4mNPTiTR5Mx5Qt6xWcs48H/JL+atQGT3i3
d1dYRcOUAWXO9818mOf5cd7TbVlQl6tjHLGkHWxz7OapH8+CCPB+NKrdBpOk
0Mq81EL45GbWbSLEh/HYILkRaxL6jNfu6/mTlxQLEIGXpGbfMNpSgCIxXrax
MuK9TgYi6m1bf3udoeA8cQLzuadxunbYno6YmP/V9M4yzzN0pIL5GziWS8iX
UZET1ts/01tgLdwMx8KEXi2qFfiFyeSsKLMWyPCkldPDOdDXxQozNWiBu4ry
1GshbOCSOJ+W+HNhxXj5zMDBFvjww+WxVR0FztvZX9Bo4IBpwsL1DWdpYDuo
lB4TwoUCcZ9L0udooHBOpsc0QnDOvbKIlCboX7Z6yZy1ezigOFiZp/M2GiSH
f79RuMuFc0Vs7cUBWZB297ZBn00rLPQ7wnbLyoJDBjUXhgM4kCJ97sQouxBU
jmycZ2PMhWryj/4HHiS0Hq+f73MLz95dgAi8R/aGDgeHAnQY4zutu82GnTIQ
UW8oOtVvtaB/OZhPwRHL047n6egY5r+hruBdpuB+q4j5q75La+imU5Er1iu+
6tp/rQE8RPTjRWLcantzLsrE/Vu7wzt9sREXEf1TtAtly89pQcdxv2uzho/t
HmLBLtGrzAf5TbC6b6O7vWYLTFgv/NNzgwXpQpqS8nItcNIulDHjxoRJt4kG
3VNcuJJ77W++ThNUaM2YFbIpUBl8pezPMAtWvZKxXeVMgxXDistzYwTnr0Jl
hrfg/jPHj2HcH98EakJFq8nddDhym7dqag8L5vQ6volWiwHf4ANt7783Q7P/
it/QJej/nYFhP8G5fgdwQ0sVsoFsEyIs3c2CqjcLFYOXFIHEeVv9ivvNYB1W
XW/9gIQk8fqQttiledcF/cf4uwz34pDYAkTgGc15OxJeZiCiXiP/P3V1byY6
ivlE2p2Iei/ovzTmL3zReeF8wX1MBPPXGUCBlq1UVIX1bqHGDgk58dBV3A/b
nYz7Klpc9Af3r9uerj24iotO4f4JL3zos+wrG5nhfjusKrbXJ7Fg/9ORXUWb
G0AsosiZNqcFznbueP+2iA5u8TduZvSxoVsv08fyKQ32+FWHzd7IhWdTwf0R
6+shV6Pjq1INBQ4l7B2YnmkE2QJPozQLGoRfbg2mxTNA7urinJH1NMjZFES/
rN4A+x+ffhX/VuDnz9bl/fKhw/dQ2ZtffsfA/nD+7P4AJmTpLqbNd8+Gw647
N0usaoKiu9NrFKuy4VDgN02rEwwYDpn0O2BZBMo2zU8etDJgcMpwsuQtCa3D
awi7e+JdWQE6gvGmW/1FivsF+x/ja19HqBkvyEQHcD1H5abRGGsmssN8wj1z
rhvsp6NIzD9S88BQoDod5WL+63vXqhbRqOgo1nun1Tm9QYuH4nE/zIePBT0R
4SIX3L/U3zLPrgxwUC/u37Prx2/OrWQjK9zvT/1n1l26LrjPMI4/je0lwxHX
mFc7yWzg3Q1+1+VeDa+5BbFucWyYYqRP9ZhWgv+BS8WbBjgwqF9xcgOvCmqM
3er0vCkgfVb1Kn2sBoQvXJRVGqfC1tFcO5okFWLrj/LOJlFBvbnRM3mMDCT7
JQlD6wW8Kn7dOK9bDfu9zaTzTz+DOez4FsWH9aAnVutvujQHFpW8sqXrNYB1
qmeVr24OaBpJiJ8sowLtttXc3GNFsEb2wTPGNhocn+g3dM8hISW8Vri157fb
ikK0FOPRim/bXxsVos0Y/0N23Z8NpEwkguvJLEwbQsuZKA3zuaqYa134swFt
w/zFgqOlJlMakCbmbziZKdLoQ0VyWG9xhjj3v8FWNIz7EV6tWylWzUF83L/P
W2zzdRI4aBr3b+WuuaYGN9mIhPut0G+bZvabDjpoedU1fT5EN2fwvBIKIeM/
+9LiccF9OeFnMkkjA70WXfL9w9p20Lyhv9y1kIrmK6krRibzwdfaUYQdzAWK
/cj9IBsO6LFE/psrOA8Xi+6ab7ybC9H+Lx8qUwvhHFW/7rxWK3y6ElztYJ2B
2p9PqehebIWBgTChasF+MpJ9cP40mQtLfERXpYu2oIHGMHcejQOHGsN+pZzn
QrDrw6/6RixQ8OFPXh2mw9kvsoe+WTSDxt6gRJNZRdCy/eaGJB82fHa970qP
yED34wZ/y7QI7n8ejM2LuVSkY8HqrulpBgknauqZH2wkGn92fKSEBW7KHg2q
hlyYlRQ966ceHVbWVks8LaODkvGm1nXGDND7Ej8sa1QEF1zObO8X3AtIDlVa
F4Yy0BOnlkKd400gcsEh2buJihhe3gZK0wwg37SZlGlkIxP+db66aSMs+HO0
+dV/HGh59Im8aYQCy1Snl904SIfOCK4d06IWNoU8kNFwKoKEv8eKn66qB9vU
5F+WoZnIt0fSK3IVHXwq9P3p0YLz844vh+WnqJAa8PwXL5yNDFdJ+OlMVUNx
xSSP/YECxPtwPbrXYFs5BSjJOztv5vJgMU+2ZuoPHe7sD1SRMuFBkHePy2ej
aEjF73PQMeHcmjPRkF++cuv23W3QFzTx4eH7QtBWnTdwamkbkFKi0+oPktA7
vB/6J0ulTtiR0CYcrxY/+OLUjgxE4Pcy6i+6+zGRLt5Pxns0hWoF39cgXP+z
WJhPfQUVVWN+zTIuM5/nNkMfft8lIx9fzfnLgoC/UXvfCHwgz7rkqe91wXd4
tFaoRXA/8da2rNYW+K0B3i8cbcflIo0UeDdJGitnC+4fa9qPyv0SnJvTpKXd
LVpAZv3cPNmIaODj/Rbyw2SijhwNb5c8L7yVzIGaA0WMs12F4PJ8TWn7IQ6Q
rokLq5wjIWK/2p56rrj7imCN45J2SgP5XhmIwHMoL2UbBPqI/S41/Mic68tE
Z3B9y8EXB+ME+yOL4JcrpJQUykPEvIzknsgzu8lD6ljfLwvrSvoMGwVi/dy5
qvfixlkggvfrx4JXyR87WaB7Lmr+pRwmNPPPvvx4lAtBnx9dKxGcw+3zwyeu
N1NgK97vZgesu4MF54MaXhjP+XsTRD34eziTR4eqytWPpcwF5w3xJVOTc2KA
mBdTJw/v0iMx8EPJtOCcRDNI8nOz164pghFWcMLuRBYs+hR4/+MdEuLgebu1
TkZCOYqERnF8TFxPJbswAxH4upjF8XOvMZEzntc5KUm75T2ZiIzrl4jGrJER
fM9rMb+wDRqS7hd4KATP+5LtIhW3bXgoGOsbk9hVfrubjbZh/ffWFPCtGlhg
jOftdcfo2Jn3LJi/8Oz5qbV1sIoVmPhoDRfUGOx3D6VoEJm76uwXOgUa8bxy
zt01tiuhgK+c4cHjwnT4YNZtsC+SDiIpVWR0oR46//iHbimOgSg870oD6s7D
RrEg45ERN5bJgHDaXteDtkXgrFXrsaW1ER6nPdJOSSEhN+wXpc+dx0qzScgV
x09Zr5Sv0chEBH436c6bJ6eYSBn7zZPb4qVeFkw0H9e3XEv1HSunotuYX2rA
4qHvRjwkjP3KZqNiqe1awf7B+r4YRizemMdGC7H+C8rT3KWPWKCP/UKx6OXf
ZicW/Ii1ggBmJWj7aUxfa+bAHe36ZMXqChCaP2WqF0WBEuw33I+nFvzeSwHJ
hMb2lg4KZOYf01042QDvpeQs9iiQYcU9fYmJb7FwHftVLlnMQGnwGTQf3Vcp
I1oHzSoxRy4bF8EmB4Z7tWUthN8MqU3/QEJJ2O9OWYb17HtFQjo4vo48f+Hp
2e8QF+OrxhLXhaoxUQ/2ywjdfUWNfxkoD9ff7/Fi14MDVLQC8zM9+uubx99W
xMV+69baILOzpRUFY332UqZySWfY6DfW/39me5F7
"], {{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
0.3], EdgeForm[None], GraphicsGroupBox[
TagBox[{PolygonBox[CompressedData["
1:eJxNmXUYlsUSxd/9CBFEQmkQKQEJAUEECwGRkEZaQFKkWyTEQloJ6ZS0URHE
7sLuQEXF9tqBYtzzu3N4nvvH+XZnY3Z2dt+zs/tVGjimy+hclmW99ZNXaRKQ
iwlFnc8jFHcZedod5zLy+YTjXUY+v1DCZeSPEkq6jHwBoZTLirtfZaGS644W
SrtNQaGQUFYoIxwjFBbKC+WEY4UiwglCBeti3CrWWdR2nyhUdL64xzrRYxW0
7tLui51VreMkobpwmtDIOilvINT3HEq5XTXnS7vPSc6ju4bLynguNV1W1vM4
2WXlPLdaLivvedV2WQXPtY7LKnoepwh1nWdu9VxWyTbXd1kh+7Ccx67iuZ7q
OVX1PBq6rJrn0chlJTznam5b2GtQwbZW97wa22c1PK/TXVbXdp0tnGW7GPdc
oZnrsPMct6nnNs1cdoZwptBOaGuf1HZ5U/uslvNNXFfHfWjTWegiXCwMsF20
ay2c7zkzzxZCc9uIHe2FC9wW3W3cp6F909J9GlhHc8+pqcdt6z6dbANj97du
5tXBY7Rx215CT+to7j6dnG/hOXR2nrG7uoz8eUI3l9W0T5p4rs2sE10d3baV
cKH7tLIfurvsfM+zh8va2ve9bWN7236R0Nc+au98H8+tmcfq4LST597Putt4
rj3+r00/62QPNbZd53mOzGug13CeMF9YLawShgrDhMnCJGGqcLkwV5gjTHT5
NcLVwnhhgnCVcKXzE11H2WBhiMsmuC+6r7WOnvbDJR63u+cx1P36eh4jhRH2
SV/nL3VffDncOrrZ74w7yPnu1jXYunt6rCNzpd8U2zXZ+dm2kfxlwnUue1ME
30+k/pbSGsK3QjPJS5T+oPo7lV4r+WihsPIjhWuUv0Ppc1nkKaOONucIXypf
R/haGKU2o4UZwnTPe5Tz0zzvkc6zLuO8Bvh+ljDWZeSvsO/6WQf9xrgNdTM9
9+Ge4xT7dIR1T7UtY9x2hn062Gs53vtokPPj7OehXueJ3gPshSXCYuEFzbG7
5rxP6UnCK0IvyS8rrS68IfSV/Lr9e1C4RPKnSmun0MW+WWqdM2zbQmFBFnu7
m20a6Las4zL3YQ+zl1cKK5znG1jlsv0aY6DGe1/pySm+DfSuyeIbeVZlXVX/
jNJqKfYEe2O5cKPHmu08Y94kbBbuFu4SDqjPEPX/SGkt7x8CiG+U1k3h92m2
CdsGZPGdjvU6sJb9vS6jnB/gutFuO9BrMda62DvzrXO6fbbAZSs87+3CNtvN
XLYKW4R3ZFN/2fe20pop/IQfbhZ2ZLF3R6j+C+/hlfblDutcaj9sti+WeYwt
LlviNtRtyuIsgLPgKrgY7oJ34dFW7kPfe+zTHbblPmGP8INsGCd7vld6ivAX
PpV8WGkD4RdhouSfldYTDglTJP+utH4Km3dY126hgOquFo4SGtFH6SbhFL7d
FO0Y+xnhaa8xdj0mPOo8tj7usnut9ynhSSGv9MwS8ggNU9TtsS7aEEDOEP5V
3anCMcrPFgoJp0k+UemNQkXhjBT9sOUt4U2hPNwklBOaprAJO14RXs7CD5NU
96v9QTpZ8m+W+wnNLf+r9qWVv14oJTRR2fFKFwjHCaen0M1cX/UY5J8QXnNZ
VbVbKVQRzlT7okrnCkWExil8tct96FtD5WuE6sJZKXzytOf2hn34lPOvC7XV
br1QSzhb7Z8Qtin/tNL9qm+o/BbhVKFZCh9g50fCh7YRWz8WDgjPqc2Favu8
v/cXhZ6SXzJ/nSc0dv3nWfBaj1y0+x+/WecBjwFvdMuFXvSdL5xufV/SVmkf
ya+ZD9sITSx/nQUvXpSLcwh+7CScIfk9pT+qvp3Spj6fvs3iux0g+V1/v6QX
uz0yvMvd5VWPd63twa5FWfDgIMkfmA97pTjvvlP6ZxY8NlTyx+Yz0mGSP7Hc
VTjL8i9Z8PhwyZ+Zz0kvlfy55QuFsy3/lgWvjJT8lfmFdFQuzkrkHinOUORD
WfDoGMn/MZ+SjrW9yMxjsOQPPR94YrzkH80XpBMk/2T5IuFcy/9If2elZ7r/
T1mcB6z/NUo/ySL/rNeWPfGC/YlfP82Ch6ZJ/jsFH5FOl/yP5YFCS8t5hMLK
zxGO9ffOdzJPKObvZYDQQvk/lSbhD2GqZfgM3pgpOeWCP0ivEHKWiUGIVwqa
30YIrT3eMcpfJnRQ/iShDGvFnnX7Qil460ohn/lrMN+E9edLwVPX5WIe2D9U
aKV8fjhV+UpKVwiVzV/w2PJclCOXULpIKGl+GSO0tVw0BQ/dgG3mo20+d3ab
a7f4LNtlHoanFuZCL/pG8Y0pX5w5p9CzWChrfeOEdpaLKz9FaG97S6dYh/nu
z3pMEC5Q/gTh+BQ8t0qoZr6roHSZ6+FjeHlpLsqRabfa/qb97SnWh7jy2Sz8
fJX9h7/hxbVCzVzwI7y2lbU0v9VXullokIvzaqbQ2XLFFPEX/DJb6cEs8q+Y
C+AczrmbcqGH/nWUbhTq5oJf4dkNuShHni50cn0F5WcJXVh71tTfAt8E3Ajn
XZeCr+CtG7KwAxvgveuzmMc292c+nNOX5WKfs7+v8fcHDxMDck4TYx/t/XzQ
fHI9XJBFigzPrM8ivoE/5yr9Ios8ZXAjHDnf3zvf/VrVX660o+SThXIp/L7O
Mv6fa33wMjEjcyOmhavh5P3Wh96vssjvNxd9aNuwGS6EA9+wf/DTZ1lwKTEk
3AqnLk7Bf/DghizqaLNQ6TdZpMjw8Los4jXa0+/7LGIbvnm+dXzHPQZ+h+c3
qv7iFPEGcUcuRSxADEVsQExwYwp+hCdvcfyFTPnPWeQpg0vh0BXWQVxxq+pX
peAveOy2LOIxZMp/zyJ/yGv9p7mFmAjugmPgSmI8uBPOXJOiDB69PQtbGY9x
f82iLfW0+8PxF3y0QfLfjrcYY53kw1mkyPDaHVl82+X9rZ7gfvSH1+50vEWb
2yQXFLal4Bd45gHHk/DnTZJ5LCRfwHsVTt2Sgn9Zk/uz8Htrl+N/4iX0oTev
dRc198BBO1LwIzz5YBZ2YA+89LDkW1LwGbz2UBbxW1v3y++55DW35HcdbeDK
krYbmzkH9mahi5gQrizrPGWMUyAFb8GX8Cb8Rbza3nzGHZjYak6K2InzkviQ
8+Yu5Yu4L304Cyq7nHrOJe7T5OkDV8KZfJs1/C3yTfYytxALEevcm4Kf4Kl9
WeRrm7vgLLiqobkGzoErifnhPjgTLoaTC3m97jEfwAvPZ9GWPnskl0ihmzEY
97gUuhljr/KlUqTI8OSLjnc7Wm8xvqUU901iik+yiMuQKSc+gye5TzdPwZfN
LcOxxBvkafO1Y9PWKeLPeeaD+V4D4lH4aI5lyuE72rZ23XPem+xJznJihAUp
4t19HqOndRPLvmRbz7dM7Asf0Yb4GH5qkWKNOHM4f9paH3rh53luv9D2zrP9
z1gnbdtaFzrbWR96OU8WpYhvX/YeYP8S3/3o7699iveGlineJ2h7QYqzgpiY
84J4/FWXLbB8ve3rY1uZ+2vWhc7vHKvfkCJef91lHSxTvtHxJPfrVvY39vK+
BD/D57SlD1xNzN/SY3AucB4sdvs33WZZinifuJ/4tJX1c6ZxvtF2kX3xlus6
uy19urg/euDnlSnie+J84nHeRjhLfvHdAJ7nPsG9Ar5fnuK+8L7bLHU97Tgf
2Evo2O891dVya68vbenDXYbzt7vHxw74vJv1Mw7nBW8pF9o2bBxs25kP5+kK
lxH3w//07eY8Zctcv8LzZe5dPBfmhO4h3mPrvT+RD3jPcVbyhsPd4jvbis2c
XdyF+qa4j6xXujOLvcV71kHvJ+bBfWmV5zPMc8N3nO893P4C74eeKe5Pq5PP
I+/vRa6njjacbdyt8Bv3qzX2X+8U96m1Kc4rzvkR3mPsx0vta/z5ucfGBu5W
3N06uP2X3m9rrP8zj7nW+rm3cT+kbS/nKVtt+z+1TtpiE2ctdzvOW+53X7mM
85X7G/c4zmd82dd5yta6foPn0zHFexprwnss+T7K/5XF3XC91+Mbl/Vxe/pt
cjzCGnzsNRxrX2E/69s/xX1xU4rzebXtXef14O2J2Ia3kiN3S/rANT/6+6LN
D95jm9zme/cZ5bXFN9xp+7l9F+/PjSn4Cx7j/OWc4bwhrn8hi7cgzkbuatyl
iN9439mcIv6Y5DJiCd56KOe+uM317B3ey/7yenJX3J7iLpezHnTwbsR9c1iK
++XNKeIL3tYGuI42xC28J/3qMYndB6WIXYjht3n8P1zGt8N73CH7f7J9jW+I
NzdZ3xb7n7Em+pvm+5lqGxmfeJG3M2Iz7ppH7sLYTGzCXXhIivs4c3zI/II+
4kY4griI+zn3dOIj3rqInbgLcpccn+I+ucv+3259h+2zmz3mv7YB3w523WHr
3prirk/8Othteno/EUexBtiKzdst32J7h3qOvb3/e1smjuX72eoxmAfx4CCv
wVbL+Hqgx+duNdD+Zx3gi6u8tthOPEgcO9t7iP0y22Xcnbnr70xx3ydPGTL3
Y+IZ4iN0ofM27xfeMsamiHWK+VvhTkJMzDczPMX7wq1KH8nifxTud9xVuLOM
cPv+3g+7vB6sTXH3RQexeD7roYx3i6NT2IE91NHmHtuLLcWc3+n5EV+P9vx2
ej74k/dLYnD2L2+5l6TQncf5WeYs+L+vZWLsv70+rMfvXgPeepgjczvWecqI
e4l377LMe0oR24JN5At7P7NHidnZr+MsD/F+gTvgEN6yuI/he9bg7hTxMHPh
7sDbShHn5/qbZb/c7fbU0Wa9uYe3BN4Cpnksxuabmek24/198BY9SfmSKd4+
eLuZmCJWLuO6JV4z1ps62uxOER/z9sxdhrcV3n6Iq3kf4j2H+Hq321NHm8kp
3lfuU/pSFnrRX97rzX7hvWeP7bsyxXsH78a8F5OnrHKKN5AHUrzPPKz0nSxS
ZN5tyqd465mWIl/Nfl1kO/eZrxmPuZZwHhvYq9yfFrkPvi1prmLOpf39T7A8
zN8Pb2VT6ZvizYz8ctuJfQ9Y5iwoY//w/rTX/lxm3+Ir7rMPpniPQxc6OUs4
U0Z6/420zJ2M+9sT9hfvRLzvPGQf8O7F+8hej8f7Fved+7werH1J51kj6irY
d/RHz7tZ7G3+L6jq/X6/7cPOt7Oo4+7FWFWcX+lvgu+TtvThra6y9yH7sbb3
C//lcPfCdubwZIr3Mta6sr8P/n+oYT4gz92Rt60jb28z8F2Kt6BHUpRRd+T9
a5P3OP5e7bVhLbivPp7iPY33sxNT6GaMsd4vj6Z4X0I3YzyW4r2Nb62i/U39
o/bXFa6n3ftZ5ClDN2Oss2/xF/fjhfYJvihh+zfarveymNtalyNv87eBv07z
2vF/SkOv70TPt573N/+70Id3vKrKX53iffIppR9wvrj/ZH+f5CmrkuIt8zGv
x5Oez0bbgm+5r292G3zB/RzdjMFYjTwOZehC538B4SdEEQ==
"]],
PolygonBox[CompressedData["
1:eJwtz7kOQUEUxvEZjQi1aMWTWB5AtKJRiYJKdJYbS2WLjkTQIRK6S+M2QkVH
RWF5AL2I/2Sm+OWbc+bemTnBdD6RcwkhfHBjhjlSUogfOSY3pI0V1nCww4I9
DzIoU1fQQYT6SdbJtulX0UWU3otsSP1tSeh/1Xdheg+yRrbICabmTnX3iP6X
TJIDcog46w/Zl/rd6v0nnHHHDXv2QrCknkPNk2XtxRJH6oOh1kV6AWxxpb6Y
eR1zrjrfZs+PgtSzWeghRv0mm1LP+wcArDSD
"]],
PolygonBox[{{140, 141, 325, 230, 392, 156, 326, 231, 393, 155}, {145,
146, 161, 335, 240, 402, 160, 400, 238, 333}}]},
Annotation[#, "Charting`Private`Tag$4386#1"]& ]]}, {}, {}, {}, {}},
{RGBColor[0.368417, 0.506779, 0.709798],
LineBox[{2, 1, 16, 31, 46, 61, 76, 91, 106, 121, 136, 151, 166, 181, 196,
211, 212, 213, 214, 215, 444, 282, 377, 216, 446, 284, 379, 217, 448,
286, 381, 218, 450, 288, 383, 219, 452, 290, 385, 220, 454, 292, 387,
221, 222, 223, 224, 225, 210, 195, 180, 165, 150, 135, 120, 105, 90, 75,
60, 45, 30, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2}]}}],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{Automatic, Automatic},
DisplayFunction->Identity,
Frame->True,
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{876., Automatic},
Method->{
"ScalingFunctions" -> None, "TransparentPolygonMesh" -> True,
"AxesInFront" -> True},
PlotRange->{{-0.9911599219356603,
1.0225191452366311`}, {-1.0146793394113884`, 0.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.714338200561962*^9, 3.714338213807086*^9},
3.714338249549588*^9, {3.7143383257588654`*^9, 3.714338366591443*^9},
3.714338464213398*^9, 3.714339298461061*^9, {3.714339580448917*^9,
3.714339606996037*^9}, {3.714341584847927*^9, 3.714341589015427*^9},
3.714345039700823*^9, {3.757138377572678*^9, 3.7571383861282263`*^9}},
CellLabel->"Out[20]=",ExpressionUUID->"714384ee-a03d-4f9c-96bb-07fec8b4a2f8"]
}, Open ]]
},
WindowSize->{1920, 1126},
WindowMargins->{{0, Automatic}, {0, Automatic}},
FrontEndVersion->"11.3 for Linux x86 (64-bit) (March 6, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[422, 15, 2728, 70, 193, "Input",ExpressionUUID->"6edfd4fb-eab5-4a9e-91e2-a1e526fb4c42"],
Cell[3153, 87, 1447, 30, 71, "Output",ExpressionUUID->"df27b1eb-bc8b-4fd9-8b03-d67281dbd1da"],
Cell[4603, 119, 1665, 38, 81, "Output",ExpressionUUID->"ebbede69-3871-4b56-a189-63bc1467f375"]
}, Open ]],
Cell[CellGroupData[{
Cell[6305, 162, 1194, 32, 78, "Input",ExpressionUUID->"07483dbb-7eac-4421-a2d8-38b8a0d54105"],
Cell[7502, 196, 1057, 16, 35, "Output",ExpressionUUID->"e93ee93b-1333-4319-a8f6-4f481e7d0aa2"]
}, Open ]],
Cell[CellGroupData[{
Cell[8596, 217, 2745, 72, 193, "Input",ExpressionUUID->"cd856b76-9e9b-4dc8-81e2-9c7bdaaa1494"],
Cell[11344, 291, 219, 3, 35, "Output",ExpressionUUID->"e4e9a366-b01c-4214-9f82-f8cf41287587"]
}, Open ]],
Cell[CellGroupData[{
Cell[11600, 299, 2010, 57, 101, "Input",ExpressionUUID->"4270a92a-bdc9-4330-9a7f-f0800e49dcdd"],
Cell[13613, 358, 541, 11, 23, "Message",ExpressionUUID->"8273a972-74d3-498d-b170-44c15132a30c"],
Cell[14157, 371, 663, 11, 40, "Output",ExpressionUUID->"72269c86-e6e2-46b9-b072-61bf12a4d461"],
Cell[14823, 384, 19673, 334, 462, "Output",ExpressionUUID->"714384ee-a03d-4f9c-96bb-07fec8b4a2f8"]
}, Open ]]
}
]
*)