You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

75 lines
2.4 KiB

2 years ago
#include <medusa/Medusa_fwd.hpp>
#include <medusa/bits/domains/BasicRelax.hpp>
#include <medusa/bits/domains/GeneralFill.hpp>
#include <Eigen/SparseCore>
#include <Eigen/IterativeLinearSolvers>
/// Solution of the Poisson equation on an irregular domain in 3D, with mixed bc's.
/// This example will combine all the knowledge from the previous ones along with
/// presenting XML and HDF classes
/// that are key for I/O in bigger programs.
using namespace mm; // NOLINT
int main() {
XML conf("poisson_dirichlet_3D_irregular_params.xml");
// Obtain parameters
double dx = conf.get<double>("num.dx");
int n = conf.get<int>("approximations.n");
int m = conf.get<int>("approximations.m");
double sigma = conf.get<double>("approximations.sigma");
BoxShape<Vec3d> box(0.0, 1.0);
BallShape<Vec3d> s1({0.8, 0.8, 0.9}, 0.5); // sphere to subtract from the box
DomainDiscretization <Vec3d> domain = box.discretizeBoundaryWithStep(dx);
auto d = s1.discretizeBoundaryWithStep(dx);
domain -= d; // subtract the domains
// fill the interior using GeneralFill
GeneralFill <Vec3d> fill;
domain.fill(fill, dx);
BasicRelax relax;
// relax the domain
relax.iterations(20).initialHeat(0.8).numNeighbours(3).projectionType(
BasicRelax::DO_NOT_PROJECT);
relax(domain, dx);
int N = domain.size();
domain.findSupport(FindClosest(n));
WLS<Gaussians<Vec3d>, NoWeight<Vec3d>, ScaleToFarthest,
Eigen::LLT<Eigen::MatrixXd>> wls({m, sigma});
auto storage = domain.computeShapes<sh::lap>(wls);
Eigen::SparseMatrix<double, Eigen::RowMajor> M(N, N);
Eigen::VectorXd rhs(N); rhs.setZero();
auto op = storage.implicitOperators(M, rhs);
M.reserve(storage.supportSizes());
for (int i : domain.interior()) {
double x = domain.pos(i, 0);
double y = domain.pos(i, 1);
double z = domain.pos(i, 2);
op.lap(i) = -3 * PI * PI * std::sin(PI * x) * std::sin(PI * y) * std::sin(PI * z);
}
for (int i : domain.boundary()) {
op.value(i) = 0.0;
}
Eigen::BiCGSTAB<decltype(M), Eigen::IncompleteLUT<double>> solver;
solver.compute(M);
ScalarFieldd u = solver.solve(rhs);
HDF hdf("poisson_dirichlet_3D_irregular.h5", HDF::DESTROY);
hdf.writeDoubleArray("solution", u);
hdf.writeDouble2DArray("positions", domain.positions());
hdf.close();
return 0;
}