You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

384 lines
16 KiB

#include "SurfaceIntegrator.hpp"
#include "quadrature.hpp"
#include <Eigen/Geometry> // For vector and cross product operations
#include <cmath> // For math functions like sqrt
#include <set>
#include <iostream>
namespace internal
{
// Constructor 1: Initialize only with a reference to the surface
integrator_t::integrator_t(const subface& surface) : m_surface(surface) {}
// Constructor 2: Initialize with surface and u-breaks (e.g., trimming curves)
integrator_t::integrator_t(const subface& surface,
const stl_vector_mp<double>& u_breaks,
double umin,
double umax,
double vmin,
double vmax)
: m_surface(surface), m_u_breaks(u_breaks), Umin(umin), Umax(umax), Vmin(vmin), Vmax(vmax)
{
}
integrator_t::integrator_t(const subface& surface, const parametric_plane& uv_plane)
: m_surface(surface), m_uv_plane(uv_plane), Umin(0.0), Umax(0.0), Vmin(0.0), Vmax(0.0)
{
if (!uv_plane.chain_vertices.empty()) {
// 初始化为第一个点的坐标
double min_u = uv_plane.chain_vertices[0].x();
double max_u = uv_plane.chain_vertices[0].x();
double min_v = uv_plane.chain_vertices[0].y();
double max_v = uv_plane.chain_vertices[0].y();
// 遍历所有链顶点
for (const auto& pt : uv_plane.chain_vertices) {
double u = pt.x();
double v = pt.y();
if (u < min_u) min_u = u;
if (u > max_u) max_u = u;
if (v < min_v) min_v = v;
if (v > max_v) max_v = v;
}
Umin = min_u;
Umax = max_u;
Vmin = min_v;
Vmax = max_v;
} else {
// 没有顶点时使用默认范围 [0, 1] × [0, 1]
Umin = 0.0;
Umax = 1.0;
Vmin = 0.0;
Vmax = 1.0;
}
std::set<uint32_t> unique_vertex_indices;
// 插入所有类型的顶点索引
unique_vertex_indices.insert(uv_plane.singularity_vertices.begin(), uv_plane.singularity_vertices.end());
unique_vertex_indices.insert(uv_plane.polar_vertices.begin(), uv_plane.polar_vertices.end());
unique_vertex_indices.insert(uv_plane.parallel_start_vertices.begin(), uv_plane.parallel_start_vertices.end());
std::set<double> unique_u_values;
for (uint32_t idx : unique_vertex_indices) {
if (idx < uv_plane.chain_vertices.size()) {
double u = uv_plane.chain_vertices[idx].x();
unique_u_values.insert(u);
}
}
// 转换为 vector 并排序(set 默认是有序的)
m_u_breaks = stl_vector_mp<double>(unique_u_values.begin(), unique_u_values.end());
}
// Set u-breaks (optional trimming or partitioning lines)
void integrator_t::set_ubreaks(const stl_vector_mp<double>& u_breaks) { m_u_breaks = u_breaks; }
// Main entry point to compute surface area
template <typename Func>
double integrator_t::calculate(Func&& func, int gauss_order) const
{
auto solver = m_surface.fetch_solver_evaluator();
// 在u方向进行高斯积分
auto u_integrand = [&](double u) {
// 对每个u,找到v方向的精确交点
std::vector<double> v_breaks = find_vertical_intersections(u);
// 在v方向进行高斯积分
auto v_integrand = [&](double v) {
// 判断点是否在有效域内
if (is_point_inside_domain(u, v)) {
try {
// 获取两个方向的 evaluator
auto eval_du = m_surface.fetch_curve_constraint_evaluator(parameter_v_t{}, v); // 固定 v,变 u → 得到 ∂/∂u
auto eval_dv = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u); // 固定 u,变 v → 得到 ∂/∂v
auto res_u = eval_du(u); // f(u,v), grad_f = ∂r/∂u
auto res_v = eval_dv(v); // f(u,v), grad_f = ∂r/∂v
Eigen::Vector3d p = res_u.f.template head<3>(); // 点坐标 (x,y,z)
Eigen::Vector3d dU = res_u.grad_f.template head<3>(); // ∂r/∂u
Eigen::Vector3d dV = res_v.grad_f.template head<3>(); // ∂r/∂v
// ✅ 计算面积元:||dU × dV||
Eigen::Vector3d cross = dU.cross(dV);
double jacobian = cross.norm(); // 雅可比行列式(面积缩放因子)
return func(u, v, p, dU, dV) * jacobian;
} catch (...) {
return 0.0; // 跳过奇异点
}
}
return 0.0; // 点不在有效域内
};
double v_integral = 0.0;
for (size_t i = 0; i < v_breaks.size() - 1; ++i) {
double a = v_breaks[i];
double b = v_breaks[i + 1];
// 检查区间中点是否有效
double mid_v = (a + b) / 2.0;
if (is_point_inside_domain(u, mid_v)) {
v_integral += integrate_1D(a, b, v_integrand, gauss_order);
} else {
std::cout << "uv out of domain: (" << u << "," << mid_v << ")" << std::endl;
}
}
return v_integral;
};
// 在u方向积分
double integral = 0.0;
for (size_t i = 0; i < u_breaks.size() - 1; ++i) {
double a = u_breaks[i];
double b = u_breaks[i + 1];
// 检查区间中点是否有效
double mid_u = (a + b) / 2.0;
auto v_intersections = find_vertical_intersections(mid_u, self.outerEdges, self.Vmin, self.Vmax);
if (!v_intersections.empty()) { // 确保该u区间有有效区域
integral += integrate_1D(a, b, u_integrand, gauss_order, is_u_near_singularity(mid_u));
}
}
return integral;
}
// 在 integrator_t 类中添加:
double integrator_t::compute_volume(int gauss_order) const
{
double total_volume = 0.0;
// 外层:对 u 分段积分
auto u_integrand = [&](double u) {
std::vector<double> v_breaks = find_vertical_intersections(u);
double v_integral = 0.0;
// 内层:对 v 积分
auto v_integrand = [&](double v) -> double {
if (!is_point_inside_domain(u, v)) {
return 0.0;
}
try {
// 获取偏导数
auto eval_du = m_surface.fetch_curve_constraint_evaluator(parameter_v_t{}, v); // ∂/∂u
auto eval_dv = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u); // ∂/∂v
auto res_u = eval_du(u);
auto res_v = eval_dv(v);
Eigen::Vector3d p = res_u.f.template head<3>(); // r(u,v)
Eigen::Vector3d dU = res_u.grad_f.template head<3>(); // r_u
Eigen::Vector3d dV = res_v.grad_f.template head<3>(); // r_v
// 计算 r · (r_u × r_v)
Eigen::Vector3d cross = dU.cross(dV);
double mixed_product = p.dot(cross);
return mixed_product; // 注意:不是 norm,是点积
} catch (...) {
return 0.0;
}
};
for (size_t i = 0; i < v_breaks.size() - 1; ++i) {
double a = v_breaks[i];
double b = v_breaks[i + 1];
double mid_v = (a + b) / 2.0;
if (is_point_inside_domain(u, mid_v)) {
v_integral += integrate_1D(a, b, v_integrand, gauss_order);
}
}
return v_integral;
};
// 在 u 方向积分
for (size_t i = 0; i < m_u_breaks.size() - 1; ++i) {
double a = m_u_breaks[i];
double b = m_u_breaks[i + 1];
double mid_u = (a + b) / 2.0;
auto v_intersections = find_vertical_intersections(mid_u);
if (!v_intersections.empty()) {
total_volume += integrate_1D(a, b, u_integrand, gauss_order, is_u_near_singularity(mid_u));
}
}
// 乘以 1/3
return std::abs(total_volume) / 3.0;
}
// 直线u=u_val与边界的交点
std::vector<double> integrator_t::find_vertical_intersections(double u_val) const
{
std::vector<double> intersections;
std::vector<int32_t> uPositionFlags;
uPositionFlags.reserve(m_uv_plane.chain_vertices.size());
std::transform(m_uv_plane.chain_vertices.begin(),
m_uv_plane.chain_vertices.end(),
std::back_inserter(uPositionFlags),
[&](const auto& currentVertex) {
double uDifference = currentVertex.x() - u_val;
if (uDifference < 0) return -1; // 在参考值左侧
if (uDifference > 0) return 1; // 在参考值右侧
return 0; // 等于参考值
});
uint32_t group_idx = 0;
for (uint32_t element_idx = 0; element_idx < m_uv_plane.chains.index_group.size() - 1; element_idx++) {
if (element_idx > m_uv_plane.chains.start_indices[group_idx + 1]) group_idx++;
if (element_idx + 1 < m_uv_plane.chains.start_indices[group_idx + 1]) {
uint32_t vertex_idx1 = m_uv_plane.chains.index_group[element_idx];
uint32_t vertex_idx2 = m_uv_plane.chains.index_group[element_idx + 1];
if (uPositionFlags[vertex_idx1] * uPositionFlags[vertex_idx2] <= 0) {
auto v1 = m_uv_plane.chain_vertices[vertex_idx1], v2 = m_uv_plane.chain_vertices[vertex_idx2];
if (v1.x() != v2.x()) {
// "The line segment is vertical (u₁ == u₂), so there is no unique v value corresponding to the given u."
double v_initial = v1.y() + (v2.y() - v1.y()) * (u_val - v1.x()) / (v2.x() - v1.x());
auto curve_evaluator = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u_val);
auto solver_evaluator = m_surface.fetch_solver_evaluator();
auto target_function = [&](double v) -> internal::implicit_equation_intermediate {
constraint_curve_intermediate temp_res = curve_evaluator(v);
auto full_res = solver_evaluator(std::move(temp_res));
// ensure solver_eval returns implicit_equation_intermediate)
return std::get<internal::implicit_equation_intermediate>(full_res);
};
double v_solution = newton_method(target_function, v_initial);
intersections.push_back(v_solution);
} else {
intersections.push_back(v1.y());
intersections.push_back(v2.y());
}
}
}
}
// 去重排序
sort_and_unique_with_tol(intersections);
return intersections;
}
/*
point (u, v) is inside the domain by ray-casting algorithm
To determine whether a point (u, v) is inside or outside a domain by counting the intersections of a vertical ray starting
from the point and extending upwards,
NOTE: when v_intersect - v < threshold, further checks are required to accurately determine if the intersection point lies
precisely on the boundary segment.
*/
bool integrator_t::is_point_inside_domain(double u, double v) const
{
bool is_implicit_equation_intermediate = m_surface.is_implicit_equation_intermediate();
uint32_t group_idx = 0, intersection_count = 0;
for (uint32_t element_idx = 0; element_idx < m_uv_plane.chains.index_group.size() - 1; element_idx++) {
if (element_idx > m_uv_plane.chains.start_indices[group_idx + 1]) group_idx++;
if (element_idx + 1 < m_uv_plane.chains.start_indices[group_idx + 1]) {
uint32_t vertex_idx1 = m_uv_plane.chains.index_group[element_idx];
uint32_t vertex_idx2 = m_uv_plane.chains.index_group[element_idx + 1];
auto v1 = m_uv_plane.chain_vertices[vertex_idx1], v2 = m_uv_plane.chain_vertices[vertex_idx2];
if ((v1.x() <= u && v2.x() > u) || (v2.x() < u && v1.x() >= u)) {
double v_initial = v1.y() + (v2.y() - v1.y()) * (u - v1.x()) / (v2.x() - v1.x());
if (v_initial - v >= 1e-6) {
intersection_count++;
} else if (std::abs(v_initial - v) < 1e-6) {
// Only use Newton's method for implicit surfaces (scalar equation)
// Newton requires f(v) and df/dv as scalars — only implicit provides this.
// Skip parametric surfaces (vector residual) — treat initial guess as final
if (is_implicit_equation_intermediate) {
auto curve_evaluator = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u);
auto solver_evaluator = m_surface.fetch_solver_evaluator();
auto target_function = [&](double v) -> internal::implicit_equation_intermediate {
constraint_curve_intermediate temp_res = curve_evaluator(v);
auto full_res = solver_evaluator(std::move(temp_res));
// ensure solver_eval returns implicit_equation_intermediate)
return std::get<internal::implicit_equation_intermediate>(full_res);
};
double v_solution = newton_method(target_function, v_initial);
if (std::abs(v_solution - v) > 0) { intersection_count++; }
}
else{
continue;
}
}
}
/*
case v1.x() == v2.x() == u, do not count as intersection.but will cout in next iteration
*/
}
}
return intersection_count % 2 == 1; // in domain
}
bool integrator_t::is_u_near_singularity(double u, double tol) const
{
for (auto idx : m_uv_plane.singularity_vertices) {
double singular_u = m_uv_plane.chain_vertices[idx].x();
if (std::abs(u - singular_u) < tol) { return true; }
}
// 可扩展:判断是否靠近极点、极性顶点等
for (auto idx : m_uv_plane.polar_vertices) {
double polar_u = m_uv_plane.chain_vertices[idx].x();
if (std::abs(u - polar_u) < tol) { return true; }
}
return false;
}
void integrator_t::sort_and_unique_with_tol(std::vector<double>& vec, double epsilon) const
{
if (vec.empty()) return;
std::sort(vec.begin(), vec.end());
size_t write_index = 0;
for (size_t read_index = 1; read_index < vec.size(); ++read_index) {
if (std::fabs(vec[read_index] - vec[write_index]) > epsilon) {
++write_index;
vec[write_index] = vec[read_index];
}
}
vec.resize(write_index + 1);
}
// Only accepts functions that return implicit_equation_intermediate
double newton_method(
const std::function<internal::implicit_equation_intermediate(double)>& F,
double v_initial,
double tolerance,
int max_iterations)
{
double v = v_initial;
for (int i = 0; i < max_iterations; ++i) {
auto res = F(v); // Known type: implicit_equation_intermediate
double f_val = res.f;
double df_val = res.df;
if (std::abs(f_val) < tolerance) {
std::cout << "Converged at v = " << v << std::endl;
return v;
}
if (std::abs(df_val) < 1e-10) {
std::cerr << "Derivative near zero." << std::endl;
return v;
}
v = v - f_val / df_val;
}
std::cerr << "Newton failed to converge." << std::endl;
return v;
}
} // namespace internal