#include "primitive_descriptor.h" typedef raw_vector3d_t vec3; vec3 add(const vec3& point1, const vec3& point2) { return vec3{point1.x + point2.x, point1.y + point2.y, point1.z + point2.z}; } vec3 operator+(const vec3& point1, const vec3& point2) { return add(point1, point2); } vec3 sub(const vec3& point1, const vec3& point2) { return vec3{point1.x - point2.x, point1.y - point2.y, point1.z - point2.z}; } vec3 operator-(const vec3& point1, const vec3& point2) { return sub(point1, point2); } vec3 mul(const vec3& vector, const double scalar) { return vec3{vector.x * scalar, vector.y * scalar, vector.z * scalar}; } vec3 operator*(const vec3& point1, const double scalar) { return mul(point1, scalar); } vec3 div(const vec3& vector, const double scalar) { if (scalar == 0) { throw std::runtime_error("Division by zero error."); } return vec3{vector.x / scalar, vector.y / scalar, vector.z / scalar}; } vec3 operator/(const vec3& point1, const double scalar) { return div(point1, scalar); } double dot(const vec3& vector1, const vec3& vector2) { return vector1.x * vector2.x + vector1.y * vector2.y + vector1.z * vector2.z; } double dot2(const vec3& vector) { return dot(vector, vector); } vec3 cross(const vec3& vector1, const vec3& vector2) { return vec3{vector1.y * vector2.z - vector1.z * vector2.y, vector1.z * vector2.x - vector1.x * vector2.z, vector1.x * vector2.y - vector1.y * vector2.x}; } double len(const vec3& vector) { return sqrt(dot(vector, vector)); } double dis(const vec3& point1, const vec3& point2) { return len(sub(point1, point2)); } double clamp(const double t, const double min, const double max) { if (t <= min) { return min; } if (t >= max) { return max; } return t; } double sign(const double t) { return t >= 0.0 ? 1.0 : -1.0; } vec3 normalize(const vec3& vector) { double temp = len(vector); if (abs(temp) < 1e-8) { throw std::runtime_error("Cannot normalize a zero-length vector."); } temp = 1.0 / temp; return vec3{vector.x * temp, vector.y * temp, vector.z * temp}; } double evaluate_constant(constant_descriptor_t* desc, raw_vector3d_t point) { return desc->value; } double evaluate_plane(plane_descriptor_t* desc, raw_vector3d_t point) { return dot(point - desc->point, desc->normal); } double evaluate_sphere(sphere_descriptor_t* desc, raw_vector3d_t point) { return dis(point, desc->center) - desc->radius; } double evaluate_cylinder(cylinder_descriptor_t* desc, raw_vector3d_t point) { vec3& b = desc->bottom_origion; vec3 a = b + desc->offset; vec3& p = point; double r = desc->radius; vec3 ba = b - a; vec3 pa = p - a; double baba = dot(ba, ba); double paba = dot(pa, ba); double x = len(pa * baba - ba * paba) - r * baba; double y = abs(paba - baba * 0.5) - baba * 0.5; double x2 = x * x; double y2 = y * y * baba; double d = (fmax(x, y) < 0.0) ? -fmin(x2, y2) : (((x > 0.0) ? x2 : 0.0) + ((y > 0.0) ? y2 : 0.0)); return sign(d) * sqrt(abs(d)) / baba; } double evaluate_cone(cone_descriptor_t* desc, raw_vector3d_t point) { vec3& a = desc->top_point; vec3& b = desc->bottom_point; vec3& p = point; double ra = desc->radius1; double rb = desc->radius2; double rba = rb - ra; double baba = dot(b - a, b - a); double papa = dot(p - a, p - a); double paba = dot(p - a, b - a) / baba; double x = sqrt(papa - paba * paba * baba); double cax = fmax(0.0, x - ((paba < 0.5) ? ra : rb)); double cay = abs(paba - 0.5) - 0.5; double k = rba * rba + baba; double f = clamp((rba * (x - ra) + paba * baba) / k, 0.0, 1.0); double cbx = x - ra - f * rba; double cby = paba - f; double s = (cbx < 0.0 && cay < 0.0) ? -1.0 : 1.0; return s * sqrt(fmin(cax * cax + cay * cay * baba, cbx * cbx + cby * cby * baba)); } double evaluate_box(box_descriptor_t* desc, raw_vector3d_t point) { // Get the minimum and maximum bounding coordinates of the box auto min_point = desc->left_bottom_point; auto max_point = min_point + vec3{desc->length, desc->width, desc->height}; // Point in the box if (point.x >= min_point.x && point.x <= max_point.x && point.y >= min_point.y && point.y <= max_point.y && point.z >= min_point.z && point.z <= max_point.z) { double min = fmin(point.x - min_point.x, max_point.x - point.x); min = fmin(min, fmin(point.y - min_point.y, max_point.y - point.y)); min = fmin(min, fmin(point.z - min_point.y, max_point.z - point.z)); return -min; } else { // Calculate the closest distance from the point to the border of each dimension of the box double dx = fmax(fmax(min_point.x - point.x, point.x - max_point.x), 0.0); double dy = fmax(fmax(min_point.y - point.y, point.y - max_point.y), 0.0); double dz = fmax(fmax(min_point.z - point.z, point.z - max_point.z), 0.0); return sqrt(dx * dx + dy * dy + dz * dz); } } double triangle_sdf(const vec3& p, const vec3& a, const vec3& b, const vec3& c) { vec3 ba = b - a; vec3 pa = p - a; vec3 cb = c - b; vec3 pb = p - b; vec3 ac = a - c; vec3 pc = p - c; vec3 nor = cross(ba, ac); return sqrt((sign(dot(cross(ba, nor), pa)) + sign(dot(cross(cb, nor), pb)) + sign(dot(cross(ac, nor), pc)) < 2.0) ? fmin(fmin(dot2(ba * clamp(dot(ba, pa) / dot2(ba), 0.0, 1.0) - pa), dot2(cb * clamp(dot(cb, pb) / dot2(cb), 0.0, 1.0) - pb)), dot2(ac * clamp(dot(ac, pc) / dot2(ac), 0.0, 1.0) - pc)) : dot(nor, pa) * dot(nor, pa) / dot2(nor)); } bool ray_intersects_triangle(const vec3& point, const vec3& dir, const vec3& v0, const vec3& v1, const vec3& v2) { vec3 e1 = v1 - v0; vec3 e2 = v2 - v0; vec3 s = point - v0; vec3 s1 = cross(dir, e2); vec3 s2 = cross(s, e1); double coeff = 1.0 / dot(s1, e1); double t = coeff * dot(s2, e2); double b1 = coeff * dot(s1, s); double b2 = coeff * dot(s2, dir); return t >= 0 && b1 >= 0 && b2 >= 0 && (1 - b1 - b2) >= 0; } double evaluate_mesh(mesh_descriptor_t* desc, raw_vector3d_t point) { // Note: There is no check for out-of-bounds access to points, indexes and faces auto points = desc->points; auto indexs = desc->indexs; auto face = desc->faces; double min_distance = std::numeric_limits::infinity(); int count = 0; for (int i = 0; i < desc->face_number; i++) { int begin_index = face[i][0]; int length = face[i][1]; auto& point0 = points[indexs[begin_index]]; bool flag = false; for (int j = 1; j < length - 1; j++) { double temp = triangle_sdf(point, point0, points[indexs[j]], points[indexs[j + 1]]); min_distance = fmin(min_distance, temp); if (!flag && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point0, points[indexs[j]], points[indexs[j + 1]])) { flag = true; } } if (flag) { count++; } } if (min_distance < 1e-8) { return 0; } if (count % 2 == 1) { return -min_distance; } else { return min_distance; } } double evaluate_extrude(extrude_descriptor_t* desc, raw_vector3d_t point) { // Note: There is no check for out-of-bounds access to points and bulges auto points = desc->points; auto bulges = desc->bulges; auto extusion = desc->extusion; double min_distance = std::numeric_limits::infinity(); int count = 0; // Note: Currently only straight edges are considered, the bottom and top surfaces are polygons auto& point0 = points[0]; bool flag1 = false; bool flag2 = false; for (int i = 1; i < desc->edges_number - 1; i++) { // Bottom double temp = triangle_sdf(point, point0, points[i], points[i + 1]); min_distance = fmin(min_distance, temp); if (!flag1 && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point0, points[i], points[i + 1])) { flag1 = true; } // Top temp = triangle_sdf(point, point0 + extusion, points[i] + extusion, points[i + 1] + extusion); min_distance = fmin(min_distance, temp); if (!flag2 && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point0 + extusion, points[i] + extusion, points[i + 1] + extusion)) { flag2 = true; } } if (flag1) { count++; } if (flag2) { count++; } // Side for (int i = 0; i < desc->edges_number; i++) { auto& point1 = points[i]; vec3 point2; if (i + 1 == desc->edges_number) { point2 = points[0]; } else { point2 = points[i + 1]; } auto point3 = point2 + extusion; auto point4 = point1 + extusion; auto bulge = bulges[i]; if (abs(bulge) < 1e-8) { // Straight Edge bool flag = false; double temp = triangle_sdf(point, point1, point2, point3); min_distance = fmin(min_distance, temp); if (!flag && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point1, point2, point3)) { flag = true; } temp = triangle_sdf(point, point1, point3, point4); min_distance = fmin(min_distance, temp); if (!flag && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point1, point3, point4)) { flag = true; } if (flag) { count++; } } else { // Curved Edge // TODO } } if (count % 2 == 1) { return -min_distance; } else { return min_distance; } }