#include "SurfaceIntegrator.hpp" #include "quadrature.hpp" #include // For vector and cross product operations #include // For math functions like sqrt #include #include namespace internal { // Constructor 1: Initialize only with a reference to the surface integrator_t::integrator_t(const subface& surface) : m_surface(surface) {} // Constructor 2: Initialize with surface and u-breaks (e.g., trimming curves) integrator_t::integrator_t(const subface& surface, const stl_vector_mp& u_breaks, double umin, double umax, double vmin, double vmax) : m_surface(surface), m_u_breaks(u_breaks), Umin(umin), Umax(umax), Vmin(vmin), Vmax(vmax) { } integrator_t::integrator_t(const subface& surface, const parametric_plane& uv_plane) : m_surface(surface), m_uv_plane(uv_plane), Umin(0.0), Umax(0.0), Vmin(0.0), Vmax(0.0) { if (!uv_plane.chain_vertices.empty()) { // 初始化为第一个点的坐标 double min_u = uv_plane.chain_vertices[0].x(); double max_u = uv_plane.chain_vertices[0].x(); double min_v = uv_plane.chain_vertices[0].y(); double max_v = uv_plane.chain_vertices[0].y(); // 遍历所有链顶点 for (const auto& pt : uv_plane.chain_vertices) { double u = pt.x(); double v = pt.y(); if (u < min_u) min_u = u; if (u > max_u) max_u = u; if (v < min_v) min_v = v; if (v > max_v) max_v = v; } Umin = min_u; Umax = max_u; Vmin = min_v; Vmax = max_v; } else { // 没有顶点时使用默认范围 [0, 1] × [0, 1] Umin = 0.0; Umax = 1.0; Vmin = 0.0; Vmax = 1.0; } std::set unique_vertex_indices; // 插入所有类型的顶点索引 unique_vertex_indices.insert(uv_plane.singularity_vertices.begin(), uv_plane.singularity_vertices.end()); unique_vertex_indices.insert(uv_plane.polar_vertices.begin(), uv_plane.polar_vertices.end()); unique_vertex_indices.insert(uv_plane.parallel_start_vertices.begin(), uv_plane.parallel_start_vertices.end()); std::set unique_u_values; for (uint32_t idx : unique_vertex_indices) { if (idx < uv_plane.chain_vertices.size()) { double u = uv_plane.chain_vertices[idx].x(); unique_u_values.insert(u); } } // 转换为 vector 并排序(set 默认是有序的) m_u_breaks = stl_vector_mp(unique_u_values.begin(), unique_u_values.end()); } // Set u-breaks (optional trimming or partitioning lines) void integrator_t::set_ubreaks(const stl_vector_mp& u_breaks) { m_u_breaks = u_breaks; } // Main entry point to compute surface area template double integrator_t::calculate(Func&& func, int gauss_order) const { auto solver = m_surface.fetch_solver_evaluator(); // 在u方向进行高斯积分 auto u_integrand = [&](double u) { // 对每个u,找到v方向的精确交点 std::vector v_breaks = find_vertical_intersections(u); // 在v方向进行高斯积分 auto v_integrand = [&](double v) { // 判断点是否在有效域内 if (is_point_inside_domain(u, v)) { try { // 获取两个方向的 evaluator auto eval_du = m_surface.fetch_curve_constraint_evaluator(parameter_v_t{}, v); // 固定 v,变 u → 得到 ∂/∂u auto eval_dv = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u); // 固定 u,变 v → 得到 ∂/∂v auto res_u = eval_du(u); // f(u,v), grad_f = ∂r/∂u auto res_v = eval_dv(v); // f(u,v), grad_f = ∂r/∂v Eigen::Vector3d p = res_u.f.template head<3>(); // 点坐标 (x,y,z) Eigen::Vector3d dU = res_u.grad_f.template head<3>(); // ∂r/∂u Eigen::Vector3d dV = res_v.grad_f.template head<3>(); // ∂r/∂v // ✅ 计算面积元:||dU × dV|| Eigen::Vector3d cross = dU.cross(dV); double jacobian = cross.norm(); // 雅可比行列式(面积缩放因子) return func(u, v, p, dU, dV) * jacobian; } catch (...) { return 0.0; // 跳过奇异点 } } return 0.0; // 点不在有效域内 }; double v_integral = 0.0; for (size_t i = 0; i < v_breaks.size() - 1; ++i) { double a = v_breaks[i]; double b = v_breaks[i + 1]; // 检查区间中点是否有效 double mid_v = (a + b) / 2.0; if (is_point_inside_domain(u, mid_v)) { v_integral += integrate_1D(a, b, v_integrand, gauss_order); } else { std::cout << "uv out of domain: (" << u << "," << mid_v << ")" << std::endl; } } return v_integral; }; // 在u方向积分 double integral = 0.0; for (size_t i = 0; i < u_breaks.size() - 1; ++i) { double a = u_breaks[i]; double b = u_breaks[i + 1]; // 检查区间中点是否有效 double mid_u = (a + b) / 2.0; auto v_intersections = find_vertical_intersections(mid_u, self.outerEdges, self.Vmin, self.Vmax); if (!v_intersections.empty()) { // 确保该u区间有有效区域 integral += integrate_1D(a, b, u_integrand, gauss_order, is_u_near_singularity(mid_u)); } } return integral; } // 在 integrator_t 类中添加: double integrator_t::compute_volume(int gauss_order) const { double total_volume = 0.0; // 外层:对 u 分段积分 auto u_integrand = [&](double u) { std::vector v_breaks = find_vertical_intersections(u); double v_integral = 0.0; // 内层:对 v 积分 auto v_integrand = [&](double v) -> double { if (!is_point_inside_domain(u, v)) { return 0.0; } try { // 获取偏导数 auto eval_du = m_surface.fetch_curve_constraint_evaluator(parameter_v_t{}, v); // ∂/∂u auto eval_dv = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u); // ∂/∂v auto res_u = eval_du(u); auto res_v = eval_dv(v); Eigen::Vector3d p = res_u.f.template head<3>(); // r(u,v) Eigen::Vector3d dU = res_u.grad_f.template head<3>(); // r_u Eigen::Vector3d dV = res_v.grad_f.template head<3>(); // r_v // 计算 r · (r_u × r_v) Eigen::Vector3d cross = dU.cross(dV); double mixed_product = p.dot(cross); return mixed_product; // 注意:不是 norm,是点积 } catch (...) { return 0.0; } }; for (size_t i = 0; i < v_breaks.size() - 1; ++i) { double a = v_breaks[i]; double b = v_breaks[i + 1]; double mid_v = (a + b) / 2.0; if (is_point_inside_domain(u, mid_v)) { v_integral += integrate_1D(a, b, v_integrand, gauss_order); } } return v_integral; }; // 在 u 方向积分 for (size_t i = 0; i < m_u_breaks.size() - 1; ++i) { double a = m_u_breaks[i]; double b = m_u_breaks[i + 1]; double mid_u = (a + b) / 2.0; auto v_intersections = find_vertical_intersections(mid_u); if (!v_intersections.empty()) { total_volume += integrate_1D(a, b, u_integrand, gauss_order, is_u_near_singularity(mid_u)); } } // 乘以 1/3 return std::abs(total_volume) / 3.0; } // 直线u=u_val与边界的交点 std::vector integrator_t::find_vertical_intersections(double u_val) const { std::vector intersections; std::vector uPositionFlags; uPositionFlags.reserve(m_uv_plane.chain_vertices.size()); std::transform(m_uv_plane.chain_vertices.begin(), m_uv_plane.chain_vertices.end(), std::back_inserter(uPositionFlags), [&](const auto& currentVertex) { double uDifference = currentVertex.x() - u_val; if (uDifference < 0) return -1; // 在参考值左侧 if (uDifference > 0) return 1; // 在参考值右侧 return 0; // 等于参考值 }); uint32_t group_idx = 0; for (uint32_t element_idx = 0; element_idx < m_uv_plane.chains.index_group.size() - 1; element_idx++) { if (element_idx > m_uv_plane.chains.start_indices[group_idx + 1]) group_idx++; if (element_idx + 1 < m_uv_plane.chains.start_indices[group_idx + 1]) { uint32_t vertex_idx1 = m_uv_plane.chains.index_group[element_idx]; uint32_t vertex_idx2 = m_uv_plane.chains.index_group[element_idx + 1]; if (uPositionFlags[vertex_idx1] * uPositionFlags[vertex_idx2] <= 0) { auto v1 = m_uv_plane.chain_vertices[vertex_idx1], v2 = m_uv_plane.chain_vertices[vertex_idx2]; if (v1.x() != v2.x()) { // "The line segment is vertical (u₁ == u₂), so there is no unique v value corresponding to the given u." double v_initial = v1.y() + (v2.y() - v1.y()) * (u_val - v1.x()) / (v2.x() - v1.x()); auto curve_evaluator = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u_val); auto solver_evaluator = m_surface.fetch_solver_evaluator(); auto target_function = [&](double v) -> internal::implicit_equation_intermediate { constraint_curve_intermediate temp_res = curve_evaluator(v); auto full_res = solver_evaluator(std::move(temp_res)); // ensure solver_eval returns implicit_equation_intermediate) return std::get(full_res); }; double v_solution = newton_method(target_function, v_initial); intersections.push_back(v_solution); } else { intersections.push_back(v1.y()); intersections.push_back(v2.y()); } } } } // 去重排序 sort_and_unique_with_tol(intersections); return intersections; } /* point (u, v) is inside the domain by ray-casting algorithm To determine whether a point (u, v) is inside or outside a domain by counting the intersections of a vertical ray starting from the point and extending upwards, NOTE: when v_intersect - v < threshold, further checks are required to accurately determine if the intersection point lies precisely on the boundary segment. */ bool integrator_t::is_point_inside_domain(double u, double v) const { bool is_implicit_equation_intermediate = m_surface.is_implicit_equation_intermediate(); uint32_t group_idx = 0, intersection_count = 0; for (uint32_t element_idx = 0; element_idx < m_uv_plane.chains.index_group.size() - 1; element_idx++) { if (element_idx > m_uv_plane.chains.start_indices[group_idx + 1]) group_idx++; if (element_idx + 1 < m_uv_plane.chains.start_indices[group_idx + 1]) { uint32_t vertex_idx1 = m_uv_plane.chains.index_group[element_idx]; uint32_t vertex_idx2 = m_uv_plane.chains.index_group[element_idx + 1]; auto v1 = m_uv_plane.chain_vertices[vertex_idx1], v2 = m_uv_plane.chain_vertices[vertex_idx2]; if ((v1.x() <= u && v2.x() > u) || (v2.x() < u && v1.x() >= u)) { double v_initial = v1.y() + (v2.y() - v1.y()) * (u - v1.x()) / (v2.x() - v1.x()); if (v_initial - v >= 1e-6) { intersection_count++; } else if (std::abs(v_initial - v) < 1e-6) { // Only use Newton's method for implicit surfaces (scalar equation) // Newton requires f(v) and df/dv as scalars — only implicit provides this. // Skip parametric surfaces (vector residual) — treat initial guess as final if (is_implicit_equation_intermediate) { auto curve_evaluator = m_surface.fetch_curve_constraint_evaluator(parameter_u_t{}, u); auto solver_evaluator = m_surface.fetch_solver_evaluator(); auto target_function = [&](double v) -> internal::implicit_equation_intermediate { constraint_curve_intermediate temp_res = curve_evaluator(v); auto full_res = solver_evaluator(std::move(temp_res)); // ensure solver_eval returns implicit_equation_intermediate) return std::get(full_res); }; double v_solution = newton_method(target_function, v_initial); if (std::abs(v_solution - v) > 0) { intersection_count++; } } else{ continue; } } } /* case v1.x() == v2.x() == u, do not count as intersection.but will cout in next iteration */ } } return intersection_count % 2 == 1; // in domain } bool integrator_t::is_u_near_singularity(double u, double tol) const { for (auto idx : m_uv_plane.singularity_vertices) { double singular_u = m_uv_plane.chain_vertices[idx].x(); if (std::abs(u - singular_u) < tol) { return true; } } // 可扩展:判断是否靠近极点、极性顶点等 for (auto idx : m_uv_plane.polar_vertices) { double polar_u = m_uv_plane.chain_vertices[idx].x(); if (std::abs(u - polar_u) < tol) { return true; } } return false; } void integrator_t::sort_and_unique_with_tol(std::vector& vec, double epsilon) const { if (vec.empty()) return; std::sort(vec.begin(), vec.end()); size_t write_index = 0; for (size_t read_index = 1; read_index < vec.size(); ++read_index) { if (std::fabs(vec[read_index] - vec[write_index]) > epsilon) { ++write_index; vec[write_index] = vec[read_index]; } } vec.resize(write_index + 1); } // Only accepts functions that return implicit_equation_intermediate double newton_method( const std::function& F, double v_initial, double tolerance, int max_iterations) { double v = v_initial; for (int i = 0; i < max_iterations; ++i) { auto res = F(v); // Known type: implicit_equation_intermediate double f_val = res.f; double df_val = res.df; if (std::abs(f_val) < tolerance) { std::cout << "Converged at v = " << v << std::endl; return v; } if (std::abs(df_val) < 1e-10) { std::cerr << "Derivative near zero." << std::endl; return v; } v = v - f_val / df_val; } std::cerr << "Newton failed to converge." << std::endl; return v; } } // namespace internal