|
|
|
@ -13,9 +13,14 @@ double integrator_t::calculate( |
|
|
|
double (*func)(double u, double v, const Eigen::Vector3d& p, const Eigen::Vector3d& dU, const Eigen::Vector3d& dV)) const |
|
|
|
{ |
|
|
|
double total_integral = 0.0; |
|
|
|
for (const auto& [subface_index, param_plane] : m_uv_planes) { |
|
|
|
const auto& subface = m_subfaces[subface_index].object_ptr.get(); |
|
|
|
total_integral += calculate_one_subface(subface, param_plane, gauss_order, func); |
|
|
|
for (int subface_index = 0; subface_index < m_subfaces.size(); ++subface_index) { |
|
|
|
if (m_uv_planes.find(subface_index) != m_uv_planes.end()) { |
|
|
|
const auto& param_plane = m_uv_planes.at(subface_index); |
|
|
|
const auto& subface = m_subfaces[subface_index].object_ptr.get(); |
|
|
|
total_integral += calculate_one_subface(subface, param_plane, gauss_order, func); |
|
|
|
} else { |
|
|
|
// the subface has no associated parametric plane, meaning it is compete face without trimming
|
|
|
|
} |
|
|
|
} |
|
|
|
return total_integral; |
|
|
|
} |
|
|
|
@ -27,11 +32,15 @@ double integrator_t::calculate_one_subface( |
|
|
|
double (*func)(double u, double v, const Eigen::Vector3d& p, const Eigen::Vector3d& dU, const Eigen::Vector3d& dV)) const |
|
|
|
{ |
|
|
|
auto solver = subface.fetch_solver_evaluator(); |
|
|
|
const auto& uv_bounds = param_plane.uv_bounds; |
|
|
|
auto u_min = uv_bounds.min().x(); |
|
|
|
auto u_max = uv_bounds.max().x(); |
|
|
|
auto v_min = uv_bounds.min().y(); |
|
|
|
auto v_max = uv_bounds.max().y(); |
|
|
|
// Gaussian integration in u direction
|
|
|
|
auto u_integrand = [&](double u) { |
|
|
|
// Find exact v intersections for each u
|
|
|
|
stl_vector_mp<double> v_breaks = find_v_intersections_at_u(subface, param_plane, u); |
|
|
|
; |
|
|
|
stl_vector_mp<double> v_breaks = find_v_intersections_at_u(subface, param_plane, u, true,v_min, v_max); |
|
|
|
|
|
|
|
// Gaussian integration in v direction
|
|
|
|
auto v_integrand = [&](double v) { |
|
|
|
@ -78,14 +87,14 @@ double integrator_t::calculate_one_subface( |
|
|
|
}; |
|
|
|
|
|
|
|
// Integrate in u direction
|
|
|
|
const auto& u_breaks = compute_u_breaks(param_plane, 0.0, 1.0); |
|
|
|
const auto& u_breaks = compute_u_breaks(param_plane, u_min, u_max); |
|
|
|
double integral = 0.0; |
|
|
|
for (size_t i = 0; i < u_breaks.size() - 1; ++i) { |
|
|
|
double a = u_breaks[i]; |
|
|
|
double b = u_breaks[i + 1]; |
|
|
|
|
|
|
|
double mid_u = (a + b) / 2.0; |
|
|
|
auto v_intersections = find_v_intersections_at_u(subface, param_plane, mid_u); |
|
|
|
auto v_intersections = find_v_intersections_at_u(subface, param_plane, mid_u,true, v_min, v_max); |
|
|
|
|
|
|
|
if (!v_intersections.empty()) { |
|
|
|
integral += integrate_1D(a, b, u_integrand, gauss_order, is_u_near_singularity(mid_u)); |
|
|
|
@ -115,8 +124,9 @@ stl_vector_mp<double> integrator_t::compute_u_breaks(const parametric_plane_t& p |
|
|
|
for (size_t i = 0; i < param_plane.chain_vertices.size(); ++i) { |
|
|
|
const auto& vertices = param_plane.chain_vertices[i]; |
|
|
|
auto& vertex_flags = param_plane.vertex_special_flags[i]; |
|
|
|
auto& edge_flags = param_plane.edge_near_parallel_flags[i]; |
|
|
|
for (size_t j = 0; j < vertices.size(); ++j) { |
|
|
|
if (vertex_flags[j]) { break_set.insert(vertices[j].x()); } // Special vertex u
|
|
|
|
if (vertex_flags[j] || edge_flags[j]) { break_set.insert(vertices[j].x()); } // Special vertex u
|
|
|
|
} |
|
|
|
} |
|
|
|
// Return as vector (sorted and unique due to set)
|
|
|
|
@ -125,21 +135,30 @@ stl_vector_mp<double> integrator_t::compute_u_breaks(const parametric_plane_t& p |
|
|
|
|
|
|
|
stl_vector_mp<double> integrator_t::find_v_intersections_at_u(const subface& subface, |
|
|
|
const parametric_plane_t& param_plane, |
|
|
|
double u_val) const |
|
|
|
double u_val, |
|
|
|
bool if_add_boundary, |
|
|
|
double v_min, |
|
|
|
double v_max |
|
|
|
) const |
|
|
|
{ |
|
|
|
stl_vector_mp<double> intersections; |
|
|
|
if (if_add_boundary) { |
|
|
|
intersections.push_back(v_min); |
|
|
|
intersections.push_back(v_max); |
|
|
|
} |
|
|
|
|
|
|
|
// Iterate over each boundary chain
|
|
|
|
for (const auto& chain : param_plane.chain_vertices) { |
|
|
|
const size_t n_vertices = chain.size(); |
|
|
|
if (n_vertices < 2) continue; // Skip degenerate chains
|
|
|
|
const size_t n_vertices = chain.size()-1; |
|
|
|
if (n_vertices < 2){ |
|
|
|
std::cout << "Warning: Degenerate chain with less than 2 vertices." << std::endl; |
|
|
|
continue; // Skip degenerate chains
|
|
|
|
} |
|
|
|
|
|
|
|
// Iterate over each edge in the chain (including closing edge if desired)
|
|
|
|
for (size_t i = 0; i < n_vertices; ++i) { |
|
|
|
size_t j = (i + 1) % n_vertices; // Next vertex index (wraps around for closed chain)
|
|
|
|
|
|
|
|
const Eigen::Vector2d& v1 = chain[i]; // Current vertex: (u1, v1)
|
|
|
|
const Eigen::Vector2d& v2 = chain[j]; // Next vertex: (u2, v2)
|
|
|
|
const Eigen::Vector2d& v2 = chain[i + 1]; // Next vertex: (u2, v2)
|
|
|
|
|
|
|
|
double u1 = v1.x(), v1_val = v1.y(); |
|
|
|
double u2 = v2.x(), v2_val = v2.y(); |
|
|
|
@ -218,7 +237,7 @@ bool integrator_t::is_point_inside_domain(const subface& subface, |
|
|
|
double u, |
|
|
|
double v) const |
|
|
|
{ |
|
|
|
auto intersections = find_v_intersections_at_u(subface, param_plane, u); |
|
|
|
auto intersections = find_v_intersections_at_u(subface, param_plane, u, false); |
|
|
|
const double tol_near = 1e-8; |
|
|
|
const double tol_above = 1e-12; |
|
|
|
|
|
|
|
|