You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

61 lines
1.9 KiB

3 years ago
%*******************************************************************************
% function: p_poly_dist
% Description: distance from pont to polygon whose vertices are specified by the
% vectors xv and yv
% Input:
% x - point's x coordinate
% y - point's y coordinate
% xv - vector of polygon vertices x coordinates
% yv - vector of polygon vertices x coordinates
% Output:
% d - distance from point to polygon (defined as a minimal distance from
% point to any of polygon's ribs, positive if the point is outside the
% polygon and negative otherwise)
% Routines: p_poly_dist.m
% Revision history:
% 7/9/2006 - case when all projections are outside of polygon ribs
% 23/5/2004 - created by Michael Yoshpe
% Remarks:
%*******************************************************************************
function d = p_poly_dist1(x, y, xv, yv)
% If (xv,yv) is not closed, close it.
xv = xv(:);
yv = yv(:);
Nv = length(xv);
if ((xv(1) ~= xv(Nv)) || (yv(1) ~= yv(Nv)))
xv = [xv ; xv(1)];
yv = [yv ; yv(1)];
Nv = Nv + 1;
end
% linear parameters of segments that connect the vertices
A = -diff(yv);
B = diff(xv);
C = yv(2:end).*xv(1:end-1) - xv(2:end).*yv(1:end-1);
% find the projection of point (x,y) on each rib
AB = 1./(A.^2 + B.^2);
vv = (A*x+B*y+C);
xp = x - (A.*AB).*vv;
yp = y - (B.*AB).*vv;
% find all cases where projected point is inside the segment
idx_x = (((xp>=xv(1:end-1)) & (xp<=xv(2:end))) | ((xp>=xv(2:end)) & (xp<=xv(1:end-1))));
idx_y = (((yp>=yv(1:end-1)) & (yp<=yv(2:end))) | ((yp>=yv(2:end)) & (yp<=yv(1:end-1))));
idx = idx_x & idx_y;
% distance from point (x,y) to the vertices
dv = sqrt((xv(1:end-1)-x).^2 + (yv(1:end-1)-y).^2);
if(~any(idx)) % all projections are outside of polygon ribs
d = min(dv);
else
% distance from point (x,y) to the projection on ribs
dp = sqrt((xp(idx)-x).^2 + (yp(idx)-y).^2);
d = min(min(dv), min(dp));
end
if(inpolygon(x, y, xv, yv))
d = -d;
end