%-------------------------- % @Author: Jingqiao Hu % @Date: 2021-09-13 20:11:46 % @LastEditTime: 2021-09-18 10:06:45 % input: % harm_u is the harmonic solutions % microx is the size of the fine mesh in one coarse element % lx is the length of one coarse element % output: n_ij % TODO: run %-------------------------- function n_ma = optimize_NH(harm_u, microx, lx, addNum) nele_ma = size(harm_u, 1); dx = lx / microx; num_ndofs = 2*(microx+1)^2; n_ma = cell(nele_ma, 1); [dNh_ele, ~, ~] = shape_gradient_ele(dx/2, dx/2, 4); % dNdx with 4 gauss points, 4*8 & 3*8 [~, ~, edofMat_mi, ~] = forAssemble(microx, microx); [vdofs, ~, ~, ~, ~] = multi_microBC(microx, addNum, 0); [A1, b1, Q_obj] = prepare_optNH(edofMat_mi, microx, dNh_ele, vdofs); parfor ele = 1:nele_ma hue = harm_u{ele}; [A2, b2] = harmonic_constraint(num_ndofs, hue, vdofs); % assemble all constraints together A0 = [A1; A2]; A = sparse(A0); b = sparse([b1; b2]); % optimization n = quadratic_programming(A, b, Q_obj); n_opt = reshape(n, [], num_ndofs); % [ndofs, vdofs] n_ma{ele} = n_opt; end end function [A, b, Q] = prepare_optNH(edofMat_mi, microx, dNh, vdofs) num_vdofs = length(vdofs); alldofs_mi = 2*(microx+1)^2; Q = obj_Q(dNh, edofMat_mi, microx, num_vdofs); % constraints [A, b] = geometric_constraint(vdofs, alldofs_mi); end function [A3, b3] = harmonic_constraint(num_ndofs, harm_u, vdofs) num_vdofs = length(vdofs); testNum = size(harm_u,2); % cons3: harmonic cons b3 = harm_u(:); % [2n*3, 1] A3 = zeros(num_ndofs * testNum, num_ndofs * num_vdofs); I3 = eye(num_ndofs); for i = 1:testNum R3 = harm_u(vdofs, i); % [2v, 1] A3i = kron(I3, R3'); % [1,2v] -> [2n,2n*2v] A3(num_ndofs*(i-1)+1:num_ndofs*i, :) = A3i; end end % rewrite constraints to a big Ax = b, i.e. [A1;A2;A3]x = [b1;b2;b3] function [A, b] = geometric_constraint(vdofs, num_ndofs) num_vdofs = length(vdofs); n1 = (1:num_vdofs*num_ndofs)'; n2 = reshape(1:num_vdofs*num_ndofs, 8, []); % cons1: \sum_i n_ij = I I = eye(2); R1 = repmat(I, 1, num_vdofs/2); % [2, 2v] I = eye(num_ndofs); A1 = kron(I, R1); % [2,2v] -> [2*2n, 2v*2n] C1 = repmat(eye(2), 1, num_ndofs/2); % [2, 2n] b1 = C1(:); % cons2: n_ij = \delta_ij * I, for all X_i^H, X_j^H R2 = zeros(num_vdofs, num_ndofs); % [2v, 2n] R2(:, vdofs) = eye(num_vdofs); I2 = eye(num_vdofs); A2 = kron(R2, I2); % [2v*2v, 2v*2n] C2 = eye(num_vdofs); b2 = C2(:); A = [A1; A2]; b = [b1; b2]; end % expand orignal n:[2n,2v] to [2n*2v,1] % min \sum tr(n^T * dNh^T * dNh * n) = \sum tr(n^T * Q * n) function Q = obj_Q(dNh, edofMat_mi, microx, num_vdofs) eleNum_mi = microx^2; alldofs_mi = 2*(microx+1)^2; % for obj, dNh: [4,8] -> [4m,8m] -> [4m,2n] ->[4m*2v,2n*2v] Q = 0; I1 = eye(size(edofMat_mi, 1)); % [m,m] I2 = eye(num_vdofs); % [2v,2v] for gp = 1:4 dNhg = dNh{gp}; dNh1 = kron(I1, dNhg); % [4m,8m] dNh2 = zeros(4*eleNum_mi, alldofs_mi); % [4m,2n] for ele = 1:eleNum_mi edof = edofMat_mi(ele, :); dNh2(:,edof) = dNh2(:,edof) + dNh1(:,8*(ele-1)+1:8*ele); end % post multiplcation need change kron sequence dNh_opt = sparse(kron(dNh2, I2)); % [4m*2v, 2n*2v] Q = Q + dNh_opt' * dNh_opt; end end