
MMA and GCMMA – two methods for nonlinear optimization

Krister Svanberg
Optimization and Systems Theory,

KTH, Stockholm, Sweden.
krille@math.kth.se

This note describes the algorithms used in the author’s 2007 implementations of MMA and
GCMMA in Matlab. The first versions of these methods were published in [1] and [2].

1. Considered optimization problem

Throughout this note, optimization problems of the following form are considered, where the
variables are x = (x1, . . . , xn)T∈ IRn, y = (y1, . . . , ym)T∈ IRm, and z ∈ IR.

minimize f0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to fi(x)− aiz − yi ≤ 0, i = 1, . . . ,m

x ∈ X, y ≥ 0, z ≥ 0.

(1.1)

Here, X = {x ∈ IRn | xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n}, where xmin
j and xmax

j are given

real numbers which satisfy xmin
j < xmax

j for all j, f0, f1, . . . , fm are given, continuously
differentiable, real-valued functions on X, a0, ai, ci and di are given real numbers which
satisfy a0 > 0, ai ≥ 0, ci ≥ 0, di ≥ 0 and ci + di > 0 for all i, and also aici > a0 for all i
with ai > 0.

In (1.1), the “natural” optimization variables are x1, . . . , xn, while y1, . . . , ym and z are
“artificial” optimization variables which should make it easier for the user to formulate and
solve certain subclasses of problems, like least squares problems and minmax problems.

As a first example, assume that the user wants to solve a problem on the following “standard”
form for nonlinear programming.

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,
(1.2)

where f0, f1, . . . , fm are given differentiable functions and X is as above. To make problem
(1.1) (almost) equivalent to this problem (1.2), first let a0 = 1 and ai = 0 for all i > 0. Then
z = 0 in any optimal solution of (1.1). Further, for each i, let di = 1 and ci = “a large
number”, so that the variables yi become “expensive”. Then typically y=0 in any optimal
solution of (1.1), and the corresponding x is an optimal solution of (1.2). It should be noted

1



that the problem (1.1) always has feasible solutions, and in fact also at least one optimal
solution. This holds even if the user’s problem (1.2) does not have any feasible solutions, in
which case some yi > 0 in the optimal solution of (1.1).

As a second example, assume that the user wants to solve a “min-max” problem on the form

minimize max
i=1,..,p

{hi(x)}

subject to gi(x) ≤ 0, i = 1, . . . , q

x ∈ X.

(1.3)

where hi and gi are given differentiable functions and X is as above. It is assumed that
the functions hi are non-negative on X (possibly after adding a sufficiently large constant C
to each of them, the same C for all hi). For each given x ∈ X, the value of the objective
function in problem (1.3) is the largest of the p real numbers h1(x), . . . , hp(x). Problem (1.3)
may equivalently be written on the following form with variables x ∈ IRn and z ∈ IR :

minimize z

subject to z ≥ hi(x), i = 1, . . . , p

gi(x) ≤ 0, i = 1, . . . , q

x ∈ X, z ≥ 0.

(1.4)

To make problem (1.1) (almost) equivalent to this problem (1.4), let m = p+ q, f0(x) = 0,
fi(x) = hi(x) for i = 1, . . . , p, fp+i(x) = gi(x) for i = 1, . . . , q, a0 = a1 = · · · = ap = 1,
ap+1 = · · · = ap+q = 0, d1 = · · · = dm = 1, c1 = · · · = cm = “a large number”.

As a third example, assume that the user wants to solve a constrained least squares problem
on the form

minimize 1
2

p∑
i=1

(hi(x))2

subject to gi(x) ≤ 0, i = 1, . . . , q

x ∈ X.

(1.5)

where hi and gi are given differentiable functions and X is as above. Problem (1.5) may
equivalently be written on the following form with variables x ∈ IRn and y1, . . . , y2p ∈ IR:

minimize 1
2

p∑
i=1

(y2i + y2p+i)

subject to yi ≥ hi(x), i = 1, . . . , p

yp+i ≥ −hi(x), i = 1, . . . , p

gi(x) ≤ 0, i = 1, . . . , q

yi ≥ 0 and yp+i ≥ 0, i = 1, . . . , p

x ∈ X.

(1.6)

To make problem (1.1) (almost) equivalent to this problem (1.6), let m = 2p+ q, f0(x) = 0,
fi(x) = hi(x) for i = 1, . . . , p, fp+i(x) = −hi(x) for i = 1, . . . , p, f2p+i(x) = gi(x) for
i = 1, . . . , q, a0 = 1, a1 = · · · = am = 0, d1 = · · · = dm = 1, c1 = · · · = c2p = 0,
c2p+1 = · · · = c2p+q = “a large number”.

2



2. Some practical considerations

In many applications, the constraints are on the form gi(x) ≤ gmax
i , where gi(x) stands for

e.g. a certain stress, while gmax
i is the largest permitted value on this stress. This means that

fi(x) = gi(x)− gmax
i (in (1.1) as well as in (1.2)). The user should then preferably scale the

constraints in such a way that 1 ≤ gmax
i ≤ 100 for each i (and not gmax

i = 1010). The objective
function f0(x) should preferably be scaled such that 1 ≤ f0(x) ≤ 100 for reasonable values on
the variables. The variables xj should preferably be scaled such that 0.1 ≤ xmax

j −xmin
j ≤ 100,

for all j.

Concerning the “large numbers” on the coefficients ci (mentioned above), the user should for
numerical reasons try to avoid “extremely large” values on these coefficients (like 1010). It is
better to start with “reasonably large” values and then, if it turns out that not all yi = 0 in
the optimal solution of (1.1), increase the corresponding values of ci by e.g. a factor 100 and
solve the problem again, etc. If the functions and the variables have been scaled according to
above, then “resonably large” values on the parameters ci could be, say, ci = 1000 or 10000.

Finally, concerning the simple bound constraints xmin
j ≤ xj ≤ xmax

j , it may sometimes be
the case that some variables xj do not have any prescribed upper and/or lower bounds. In
that case, it is in practice always possible to choose “artificial” bounds xmin

j and xmax
j such

that every realistic solution x satisfies the corresponding bound constraints. The user should
then preferably avoid choosing xmax

j − xmin
j unnecessarily large. It is better to try some

reasonable bounds and then, if it turns out that some variable xj becomes equal to such an
“artificial” bound in the optimal solution of (1.1), change this bound and solve the problem
again (starting from the recently obtained solution), etc.

3. The ordinary MMA

MMA is a method for solving problems on the form (1.1), using the following approach: In
each iteration, the current iteration point (x(k),y(k), z(k)) is given. Then an approximating

subproblem, in which the functions fi(x) are replaced by certain convex functions f̃
(k)
i (x), is

generated. The choice of these approximating functions is based mainly on gradient infor-

mation at the current iteration point, but also on some parameters u
(k)
j and l

(k)
j (“moving

asymptotes”) which are updated in each iteration based on information from previous iter-
ation points. The subproblem is solved, and the unique optimal solution becomes the next
iteration point (x(k+1),y(k+1), z(k+1)). Then a new subproblem is generated, etc.

3



The MMA subproblem looks as follows:

minimize f̃
(k)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to f̃
(k)
i (x)− aiz − yi ≤ 0, i = 1, . . . ,m

α
(k)
j ≤ xj ≤ β

(k)
j , j = 1, . . . , n,

yi ≥ 0, i = 1, . . . ,m

z ≥ 0.

(3.1)

In this subproblem (3.1), the approximating functions f̃
(k)
i (x) are chosen as

f̃
(k)
i (x) =

n∑
j=1

(
p
(k)
ij

u
(k)
j − xj

+
q
(k)
ij

xj − l(k)j

)
+ r

(k)
i , i = 0, 1, . . . ,m, (3.2)

where

p
(k)
ij = (u

(k)
j − x

(k)
j )2

(
1.001

(
∂fi
∂xj

(x(k))

)+
+ 0.001

(
∂fi
∂xj

(x(k))

)−
+

10−5

xmax
j − xmin

j

)
, (3.3)

q
(k)
ij = (x

(k)
j − l

(k)
j )2

(
0.001

(
∂fi
∂xj

(x(k))

)+
+ 1.001

(
∂fi
∂xj

(x(k))

)−
+

10−5

xmax
j − xmin

j

)
, (3.4)

r
(k)
i = fi(x

(k))−
n∑
j=1

(
p
(k)
ij

u
(k)
j − x

(k)
j

+
q
(k)
ij

x
(k)
j − l

(k)
j

)
. (3.5)

Here,

(
∂fi
∂xj

(x(k))

)+
denotes the largest of the two numbers

∂fi
∂xj

(x(k)) and 0,

while

(
∂fi
∂xj

(x(k))

)−
denotes the largest of the two numbers − ∂fi

∂xj
(x(k)) and 0.

The bounds α
(k)
j and β

(k)
j in (3.1) and (5.1) are chosen as

α
(k)
j = max{ xmin

j , l
(k)
j + 0.1(x

(k)
j − l

(k)
j ), x

(k)
j − 0.5(xmax

j − xmin
j ) }, (3.6)

β
(k)
j = min{ xmax

j , u
(k)
j − 0.1(u

(k)
j − x

(k)
j ), x

(k)
j + 0.5(xmax

j − xmin
j ) }, (3.7)

which means that the constraints α
(k)
j ≤ xj ≤ β

(k)
j are equivalent to the following three sets

of constraints:
xmin
j ≤ xj ≤ xmax

j , (3.8)

−0.9(x
(k)
j − l

(k)
j ) ≤ xj − x(k)j ≤ 0.9(u

(k)
j − x

(k)
j ), (3.9)

−0.5(xmax
j − xmin

j ) ≤ xj − x(k)j ≤ 0.5(xmax
j − xmin

j ). (3.10)

4



The default rules for updating the lower asymptotes l
(k)
j and the upper asymptotes u

(k)
j are

as follows. The first two iterations, when k = 1 and k = 2,

l
(k)
j = x

(k)
j − 0.5(xmax

j − xmin
j ),

u
(k)
j = x

(k)
j + 0.5(xmax

j − xmin
j ).

(3.11)

In later iterations, when k ≥ 3,

l
(k)
j = x

(k)
j − γ

(k)
j (x

(k−1)
j − l(k−1)j ),

u
(k)
j = x

(k)
j + γ

(k)
j (u

(k−1)
j − x(k−1)j ),

(3.12)

where

γ
(k)
j =


0.7 if (x

(k)
j − x

(k−1)
j )(x

(k−1)
j − x(k−2)j ) < 0,

1.2 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x(k−2)j ) > 0,

1 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x(k−2)j ) = 0,

(3.13)

provided that this leads to values that satisfy

l
(k)
j ≤ x

(k)
j − 0.01(xmax

j − xmin
j ),

l
(k)
j ≥ x

(k)
j − 10(xmax

j − xmin
j ),

u
(k)
j ≥ x

(k)
j + 0.01(xmax

j − xmin
j ),

u
(k)
j ≤ x

(k)
j + 10(xmax

j − xmin
j ).

(3.14)

If any of these bounds is violated, the corresponding l
(k)
j or u

(k)
j is put to the right hand side

of the violated inequality.

Note that most of the explicit numbers in the above expressions are just default values of
different parameters in the fortran code. More precisely:

The number 10−5 in (3.3) and (3.4) is the default value of the parameter raa0.
The number 0.1 in (3.6) and (3.7) is the default value of the parameter albefa.
The number 0.5 in (3.6) and (3.7) is the default value of the parameter move.
The number 0.5 in (3.11) is the default value of the parameter asyinit.
The number 0.7 in (3.13) is the default value of the parameter asydecr.
The number 1.2 in (3.13) is the default value of the parameter asyincr.

All these values can be carefully changed by the user. As an example, a more conservative
method is obtain by decreasing move and/or asyinit and/or asyincr.

5



4. GCMMA – the globally convergent version of MMA

The globally convergent version of MMA, from now on called GCMMA, for solving problems
of the form (1.1) consists of “outer” and “inner” iterations. The index k is used to denote
the outer iteration number, while the index ν is used to denote the inner iteration number.
Within each outer iteration, there may be zero, one, or several inner iterations. The double
index (k, ν) is used to denote the ν:th inner iteration within the k:th outer iteration.

The first iteration point is obtained by first chosing x(1) ∈ X and then chosing y(1) and z(1)

such that (x(1),y(1), z(1)) becomes a feasible solution of (1.1). This is easy. An outer iteration
of the method, going from the k:th iteration point (x(k),y(k), z(k)) to the (k+ 1):th iteration
point (x(k+1),y(k+1), z(k+1)), can be described as follows:

Given (x(k),y(k), z(k)), an approximating subproblem is generated and solved. In this sub-

problem, the functions fi(x) are replaced by certain convex functions f̃
(k,0)
i (x). The optimal

solution of this subproblem is denoted (x̂(k,0), ŷ(k,0), ẑ(k,0)). If f̃
(k,0)
i (x̂(k,0)) ≥ fi(x̂(k,0)), for all

i = 0, 1, . . . ,m , the next iteration point becomes (x(k+1),y(k+1), z(k+1)) = (x̂(k,0), ŷ(k,0), ẑ(k,0)),
and the outer iteration is completed (without any inner iterations needed). Otherwise, an
inner iteration is made, which means that a new subproblem is generated and solved at

x(k), with new approximating functions f̃
(k,1)
i (x) which are more conservative than f̃

(k,0)
i (x)

for those indices i for which the above inequality was violated. (By this we mean that

f̃
(k,1)
i (x) > f̃

(k,0)
i (x) for all x ∈ X(k), except for x = x(k) where f̃

(k,1)
i (x(k)) = f̃

(k,0)
i (x(k)).)

The optimal solution of this new subproblem is denoted (x̂(k,1), ŷ(k,1), ẑ(k,1)). If f̃
(k,1)
i (x̂(k,1)) ≥

fi(x̂
(k,1)), for all i = 0, 1, . . . ,m , the next iteration point becomes (x(k+1),y(k+1), z(k+1)) =

(x̂(k,1), ŷ(k,1), ẑ(k,1)), and the outer iteration is completed (with one inner iterations needed).
Otherwise, another inner iteration is made, which means that a new subproblem is generated

and solved at x(k), with new approximating functions f̃
(k,2)
i (x), etc. These inner iterations are

repeated until f̃
(k,ν)
i (x̂(k,ν)) ≥ fi(x̂

(k,ν)) for all i = 0, 1, . . . ,m , which always happens after
a finite (usually small) number of inner iterations. Then the next iteration point becomes
(x(k+1),y(k+1), z(k+1)) = (x̂(k,ν), ŷ(k,ν), ẑ(k,ν)), and the outer iteration is completed (with ν
inner iterations needed).

It should be noted that in each inner iteration, there is no need to recalculate the gradients
∇fi(x(k)), since x(k) has not changed. Gradients of the original functions fi are calculated
only once in each outer iteration. This is an important note since the calculation of gradients
is typically the most time consuming part in structural optimization.

6



The GCMMA subproblem looks as follows, for k ∈ {1, 2, 3, . . .} and ν ∈ {0, 1, 2, . . .}:

minimize f̃
(k,ν)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to f̃
(k,ν)
i (x)− aiz − yi ≤ 0, i = 1, . . . ,m

α
(k)
j ≤ xj ≤ β

(k)
j , j = 1, . . . , n,

yi ≥ 0, i = 1, . . . ,m

z ≥ 0.

(4.1)

In this subproblem (4.1), the approximating functions f̃
(k,ν)
i (x) are chosen as

f̃
(k,ν)
i (x) =

n∑
j=1

(
p
(k,ν)
ij

u
(k)
j − xj

+
q
(k,ν)
ij

xj − l(k)j

)
+ r

(k,ν)
i , i = 0, 1, . . . ,m , (4.2)

where

p
(k,ν)
ij = (u

(k)
j − x

(k)
j )2

(
1.001

(
∂fi
∂xj

(x(k))

)+
+ 0.001

(
∂fi
∂xj

(x(k))

)−
+

ρ
(k,ν)
i

xmax
j − xmin

j

)
, (4.3)

q
(k,ν)
ij = (x

(k)
j − l

(k)
j )2

(
0.001

(
∂fi
∂xj

(x(k))

)+
+ 1.001

(
∂fi
∂xj

(x(k))

)−
+

ρ
(k,ν)
i

xmax
j − xmin

j

)
, (4.4)

r
(k,ν)
i = fi(x

(k))−
n∑
j=1

(
p
(k,ν)
ij

u
(k)
j − x

(k)
j

+
q
(k,ν)
ij

x
(k)
j − l

(k)
j

)
. (4.5)

Note: If ρ
(k,ν+1)
i > ρ

(k,ν)
i then f̃

(k,ν+1)
i (x) is a more conservative approximation than f̃

(k,ν)
i (x).

Between each outer iteration, the bounds α
(k)
j and β

(k)
j and the asymptotes l

(k)
j and u

(k)
j are

updated as in the original MMA, the formulas (3.6)–(3.14) still hold.

The parameters ρ
(k,ν)
i in (4.3) and (4.4) are strictly positive and updated according to below.

Within a given outer iteration k, the only differences between two inner iterations are the
values of some of these parameters. In the beginning of each outer iteration, when ν = 0, the
following default values are used:

ρ
(k,0)
i =

0.1

n

n∑
j=1

∣∣∣∣ ∂fi∂xj
(x(k))

∣∣∣∣(xmax
j − xmin

j ) , for i = 0, 1, ..,m. (4.6)

If any of the right hand sides in (4.6) is < 10−6 then the corresponding ρ
(k,0)
i is set to 10−6.

7



In each new inner iteration, the updating of ρ
(k,ν)
i is based on the solution to the most recent

subproblem. Note that f̃
(k,ν)
i (x) may be written on the form:

f̃
(k,ν)
i (x) = h

(k)
i (x) + ρ

(k,ν)
i d(k)(x),

where h
(k)
i (x) and d(k)(x) do not depend on ρ

(k,ν)
i . Some calculations give that

d(k)(x) =
n∑
j=1

(u
(k)
j − l

(k)
j )(xj − x(k)j )2

(u
(k)
j − xj)(xj − l

(k)
j )(xmax

j − xmin
j )

. (4.7)

Now, let

δ
(k,ν)
i =

fi(x̂
(k,ν))− f̃ (k,ν)i (x̂(k,ν))

d(k)(x̂(k,ν))
. (4.8)

Then h
(k)
i (x̂(k,ν))+(ρ

(k,ν)
i +δ

(k,ν)
i )d(k)(x̂(k,ν)) = fi(x̂

(k,ν)), which shows that ρ
(k,ν)
i +δ

(k,ν)
i might

be a natural value of ρ
(k,ν+1)
i . In order to get a globally convergent method, this natural value

is modified as follows.

ρ
(k,ν+1)
i = min{ 1.1 (ρ

(k,ν)
i + δ

(k,ν)
i ) , 10ρ

(k,ν)
i } if δ

(k,ν)
i > 0,

ρ
(k,ν+1)
i = ρ

(k,ν)
i if δ

(k,ν)
i ≤ 0.

(4.9)

It follows from the formulas (4.2)–(4.5) that the functions f̃
(k,ν)
i are always first order ap-

proximations of the original functions fi at the current iteration point, i.e.

f̃
(k,ν)
i (x(k)) = fi(x

(k)) and
∂f̃

(k,ν)
i

∂xj
(x(k)) =

∂fi
∂xj

(x(k)). (4.10)

Since the parameters ρ
(k,ν)
i are always strictly positive, the functions f̃

(k,ν)
i are strictly convex.

This implies that there is always a unique optimal solution of the GCMMA subproblem.

There are at least two approaches for solving the subproblems in MMA and in GCMMA, the
“dual approach” and the “primal-dual interior-point approach”.

In the primal-dual interior-point approach, a sequence of relaxed KKT conditions are solved
by Newton’s method. We have implemented this approach in Matlab, since all the required
calculations are most naturally carried out on a matrix and vector level. This approach for
solving the subproblem is described next.

8



5. A primal-dual method for solving the subproblems in MMA and GCMMA

To simplify the notations, the iteration indices k and ν are now removed in the subproblem.

Further, we let bi = −r(k,ν)i , and drop the constant r
(k,ν)
0 from the objective function.

Then the MMA/GCMMA subproblem becomes

minimize g0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to gi(x)− aiz − yi ≤ bi , i = 1, . . . ,m

αj ≤ xj ≤ βj , j = 1, . . . , n

z ≥ 0, yi ≥ 0, i = 1, . . . ,m

(5.1)

where

gi(x) =
n∑
j=1

(
pij

uj − xj
+

qij
xj − lj

)
, i = 0, 1, . . . ,m, (5.2)

and where lj < αj < βj < uj for all j.

5.1. Optimality conditions for the MMA/GCMMA subproblem

Since the subproblem (5.1) is a regular convex problem, the KKT optimality conditions
are both necessary and sufficient for an optimal solution to (5.1). In order to state these
conditions, we first form the Lagrange function corresponding to (5.1).

L = g0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i ) +

m∑
i=1

λi(gi(x)− aiz − yi − bi) +

+

n∑
j=1

(ξj(αj − xj) + ηj(xj − βj))−
m∑
i=1

µiyi − ζz ,
(5.3)

where λ = (λ1, . . . , λm)T , ξ = (ξ1, . . . , ξn)T , η = (η1, . . . , ηn)T , µ = (µ1, . . . , µm)T

and ζ are non-negative Lagrange multipliers for the different constraints in (5.1).

Let

ψ(x, λ) = g0(x) +

m∑
i=1

λigi(x) =

n∑
j=1

(
pj(λ)

uj − xj
+

qj(λ)

xj − lj

)
, (5.4)

where

pj(λ) = p0j +
m∑
i

λipij and qj(λ) = q0j +

m∑
i

λiqij . (5.5)

Then the Lagrange function can be written

L = ψ(x, λ) + (a0 − ζ)z +

n∑
j=1

(ξj(αj − xj) + ηj(xj − βj)) +

+
m∑
i=1

(ciyi + 1
2diy

2
i − λiaiz − λiyi − λibi − µiyi) ,

(5.6)

9



and then the KKT optimality conditions for the subproblem (5.1) become as follows.

∂ψ

∂xj
− ξj + ηj = 0, j = 1, . . . , n (∂L/∂xj = 0) (5.7a)

ci + diyi − λi − µi = 0, i = 1, . . . ,m (∂L/∂yi = 0) (5.7b)

a0 − ζ − λTa = 0, (∂L/∂z = 0) (5.7c)

gi(x)− aiz − yi − bi ≤ 0, i = 1, . . . ,m (primal feasibility) (5.7d)

λi(gi(x)− aiz − yi − bi) = 0, i = 1, . . . ,m (compl slackness) (5.7e)

ξj(αj − xj) = 0, j = 1, . . . , n (compl slackness) (5.7f)

ηj(xj − βj) = 0, j = 1, . . . , n (compl slackness) (5.7g)

−µiyi = 0, i = 1, . . . ,m (compl slackness) (5.7h)

−ζz = 0, (compl slackness) (5.7i)

αj ≤ xj ≤ βj , j = 1, . . . , n (primal feasibility) (5.7j)

−z ≤ 0 and − yi ≤ 0, i = 1, . . . ,m (primal feasibility) (5.7k)

ξj ≥ 0 and ηj ≥ 0, j = 1, . . . , n (dual feasibility) (5.7l)

ζ ≥ 0 and µi ≥ 0, i = 1, . . . ,m (dual feasibility) (5.7m)

λi ≥ 0, i = 1, . . . ,m (dual feasibility) (5.7n)

where
∂ψ

∂xj
=

pj(λ)

(uj − xj)2
− qj(λ)

(xj − lj)2
and λTa =

m∑
i=1

λiai. (5.8)

10



5.2. The relaxed optimality conditions for the MMA/GCMMA subproblem

When a primal-dual interior-point method is used for solving the subproblem (5.1), the zeros
in the right hand sides of the complementary slackness conditions (5.7e)–(5.7i) are replaced
by the negative of a “small” parameter ε > 0. Further, slack variables si are introduced for
the constraints (5.7d). The relaxed optimality conditions then become as follows.

∂ψ

∂xj
− ξj + ηj = 0, j = 1, . . . , n (5.9a)

ci + diyi − λi − µi = 0, i = 1, . . . ,m (5.9b)

a0 − ζ − λTa = 0, (5.9c)

gi(x)− aiz − yi + si − bi = 0, i = 1, . . . ,m (5.9d)

ξj(xj − αj)− ε = 0, j = 1, . . . , n (5.9e)

ηj(βj − xj)− ε = 0, j = 1, . . . , n (5.9f)

µiyi − ε = 0, i = 1, . . . ,m (5.9g)

ζz − ε = 0, (5.9h)

λisi − ε = 0, i = 1, . . . ,m (5.9i)

xj − αj > 0 and ξj > 0, j = 1, . . . , n (5.9j)

βj − xj > 0 and ηj > 0, j = 1, . . . , n (5.9k)

yi > 0 and µi > 0, i = 1, . . . ,m (5.9l)

z > 0 and ζ > 0, (5.9m)

si > 0 and λi > 0, i = 1, . . . ,m (5.9n)

For each fixed ε > 0, there exists a unique solution (x, y, z, λ, ξ, η, µ, ζ, s) of these conditions.
This follows because (5.9a)–(5.9n) are mathematically (but not numerically) equivalent to
the KKT conditions of the following strictly convex problem in the variables x, y, z and s.

minimize g0(x) + a0z +
∑

i(ciyi + 1
2diy

2
i ) −

− ε
∑

j log(xj − αj)− ε
∑

j log(βj − xj) −

− ε
∑

i log yi − ε
∑

i log si − ε log z

subject to gi(x)− aiz − yi + si ≤ bi , i = 1, . . . ,m

(αj < xj < βj , yi > 0, z > 0, si > 0)

(5.10)

where the strict inequalities within parentheses will be satisfied automatically because of the
logarithm terms in the objective function.

11



5.3. A Newton direction for the relaxed optimality conditions

Assume that a point w = (x, y, z, λ, ξ, η, µ, ζ, s) which satisfies (5.9j)–(5.9n) is given, and
assume that, starting from this point, Newton’s method should be applied to (5.9a)–(5.9i).
Then the following system of linear equations in ∆w = (∆x,∆y,∆z,∆λ,∆ξ,∆η,∆µ,∆ζ,∆s)
should be generated and solved.



Ψ GT 〈−e〉 〈 e 〉

〈 d 〉 〈−e〉 〈−e〉

−aT −1

G 〈−e〉 −a 〈 e 〉

〈 ξ 〉 〈x−α〉

〈−η〉 〈β−x〉

〈 µ 〉 〈 y 〉

ζ z

〈 s 〉 〈 λ 〉





∆x

∆y

∆z

∆λ

∆ξ

∆η

∆µ

∆ζ

∆s



=



−δx

−δy

−δz

−δλ

−δξ

−δη

−δµ

−δζ

−δs


where δx, . . . , δs are defined by the left hand sides in (5.9a)–(5.9i),

Ψ is an n× n diagonal matrix with (Ψ)jj =
∂ 2ψ

∂x2j
=

2pj(λ)

(uj − xj)3
+

2qj(λ)

(xj − lj)3
, (5.11)

G is an m× n matrix with (G)ij =
∂gi
∂xj

=
pij

(uj − xj)2
− qij

(xj − lj)2
, (5.12)

〈 d 〉 is a diagonal matrix with the vector d = (d1, . . . , dm)T on the diagonal,
〈x−α〉 is a diagonal matrix with the vector x−α on the diagonal, etc.
e is a vector (1, . . . , 1)T , with dimension apparent from the context, so that
〈 e 〉 is a unity matrix, with dimension apparent from the context.

In the above Newton system, ∆ξ, ∆η, ∆µ, ∆ζ and ∆s can be eliminated through

∆ξ = −〈x−α〉−1〈 ξ 〉∆x− ξ + ε〈x−α〉−1e , (5.13a)

∆η = 〈β−x〉−1〈 η 〉∆x− η + ε〈β−x〉−1e , (5.13b)

∆µ = −〈 y 〉−1〈 µ 〉∆y − µ+ ε〈 y 〉−1e , (5.13c)

∆ζ = −(ζ/z)∆z − ζ + ε/z , (5.13d)

∆s = −〈 λ 〉−1〈 s 〉∆λ− s+ ε〈 λ 〉−1e . (5.13e)

12



Then the following system in (∆x,∆y,∆z,∆λ) is obtained.



Dx GT

Dy 〈−e〉

ζ/z −aT

G 〈−e〉 −a −Dλ





∆x

∆y

∆z

∆λ


=



−δ̃x

−δ̃y

−δ̃z

−δ̃λ


(5.14)

where

Dx = Ψ + 〈x−α〉−1〈 ξ 〉+ 〈β−x〉−1〈 η 〉 , (a diagonal matrix) (5.15a)

Dy = 〈 d 〉+ 〈 y 〉−1〈 µ 〉 , (a diagonal matrix) (5.15b)

Dλ = 〈 λ 〉−1〈 s 〉 , (a diagonal matrix) (5.15c)

δ̃x =
∂ψ

∂x
− ε〈x−α〉−1e+ ε〈β−x〉−1e , (5.15d)

δ̃y = c+ 〈 d 〉y − λ− ε〈 y 〉−1e , (5.15e)

δ̃z = a0 − λTa− ε/z , (a scalar) (5.15f)

δ̃λ = g(x)− az − y − b+ ε〈 λ 〉−1e . (5.15g)

In (5.15d),
∂ψ

∂x
is a vector with the n components

∂ψ

∂xj
=

pj(λ)

(uj − xj)2
− qj(λ)

(xj − lj)2
.

Next, ∆y can be eliminated from the system (5.14) through

∆y = D−1y ∆λ−D−1y δ̃y . (5.16)

Then the following system in ∆x, ∆z and ∆λ is obtained.


Dx GT

ζ/z −aT

G −a −Dλy




∆x

∆z

∆λ

 =


−δ̃x

−δ̃z

−δ̃λy

 (5.17)

where

Dλy = Dλ +D−1y , (a diagonal matrix) (5.18a)

δ̃λy = δ̃λ +D−1y δ̃y . (5.18b)

13



In this system (5.17), either ∆x or ∆λ can be eliminated. If ∆x is eliminated through

∆x = −D−1x GT∆λ−D−1x δ̃x , (5.19)

the following system in ∆λ and ∆z is obtained.

 Dλy +GD−1x GT a

aT −ζ/z


∆λ

∆z

 =

 δ̃λy −GD−1x δ̃x

δ̃z

 (5.20)

If, instead, ∆λ is eliminated from the system (5.17) through

∆λ = D−1λyG∆x−D−1λy a∆z +D−1λy δ̃λy , (5.21)

the following system in ∆x and ∆z is obtained.

 Dx +GTD−1λyG −GTD−1λy a

−aTD−1λyG ζ/z + aTD−1λy a


∆x

∆z

 =

 −δ̃x −G
TD−1λy δ̃λy

−δ̃z + aTD−1λy δ̃λy

 (5.22)

Note that the size of the system (5.20) is (m+1)×(m+1), while the size of the system (5.22)
is (n + 1) × (n + 1). Therefore, typically, the system (5.20) should be preferred if n > m,
while the system (5.22) should be preferred if m > n.

In both the systems (5.20) and (5.22), it is of course possible to eliminate also the variable
∆z (and reduce the systems to m×m and n×n, respectively), but for numerical reasons it is
not wise to do that. As an example, if a is dense (many non-zeros) then the system obtained
after eliminating ∆z will be dense, even if the original system (5.20) or (5.22) is sparse.

5.4. Line search in the Newton direction

When the Newton direction ∆w = (∆x,∆y,∆z,∆λ,∆ξ,∆η,∆µ,∆ζ,∆s) has been calculated
in the given point w = (x, y, z, λ, ξ, η, µ, ζ, s), a step should be taken in that direction.
A pure Newton step would be to take a step equal to the calculated direction, but such a
step might lead to a point where some of the inequalities (5.9j)–(5.9n) are violated.
Therefore, we first let t be the largest number such that

t ≤ 1, xj + t∆xj − αj ≥ 0.01(xj − αj) for all j, βj − (xj + t∆xj) ≥ 0.01(βj − xj) for all j,

and (y, z, λ, ξ, η, µ, ζ, s) + t·(∆y,∆z,∆λ,∆ξ,∆η,∆µ,∆ζ,∆s) ≥ 0.01·(y, z, λ, ξ, η, µ, ζ, s).

Further, the new point should also be in some sense better than the previous.
Therefore, we let τ be the largest of t, t/2, t/4, t/8, . . . such that

‖δ(w + τ ·∆w)‖ < ‖δ(w)‖,

where δ(w) is the residual vector defined by the left hand sides in the relaxed KKT conditions
(5.9a)–(5.9i), and ‖ · ‖ is the ordinary Euclidian norm. This is always possible to obtain since
the Newton direction is a descent direction for ‖δ(w)‖.

14



5.5. The complete primal-dual algorithm

First of all, ε(1) and a starting point w(1) = (x(1), y(1), z(1), λ(1), ξ(1), η(1), µ(1), ζ(1), s(1))
which satisfies (5.9j)–(5.9n) are chosen. The following is a simple but reasonable choice.

ε(1) = 1, x
(1)
j = 1

2(αj + βj), y
(1)
i = 1, z(1) = 1, ζ(1) = 1, λ

(1)
i = 1, s

(1)
i = 1,

ξ
(1)
j = max{ 1 , 1/(x

(1)
j − αj)}, η

(1)
j = max{ 1 , 1/(βj − x(1)j )}, µ

(1)
i = max{ 1 , ci/2}.

A typical iteration, leading from the `:th iteration point w(`) to the (`+1):th iteration
point w(`+1), consists of the following steps.

Step 1: For given ε(`) and w(`) which satisfy (5.9j)–(5.9n),
calculate ∆w(`) as described in section 5.3 above.

Step 2: Calculate a steplength τ (`) as described in section 5.4 above.

Step 3: Let w(`+1) = w(`) + τ (`) ·∆w(`).

Step 4: If ‖ δ(w(`+1)) ‖∞ < 0.9 ε(`), let ε(`+1) = 0.1 ε(`).
Otherwise, let ε(`+1) = ε(`). Increase ` by 1 and go to Step 1.

The algorithm is terminated when ε(`) has become sufficiently small, say ε(`) ≤ 10−7,
and ‖ δ(w(`+1)) ‖∞ < 0.9 ε(`).

15



6. A small test problem

Consider the following problem on the form (1.2) in the variables x = (x1, x2, x3)
T:

minimize x21 + x22 + x23
subject to (x1 − 5)2 + (x2 − 2)2 + (x3 − 1)2 ≤ 9,

(x1 − 3)2 + (x2 − 4)2 + (x3 − 3)2 ≤ 9,
0 ≤ xj ≤ 5, j = 1, 2, 3,

(6.1)

With c1 = c2 = 1000, d1 = d2 = 1, a1 = a2 = 0 and a0 = 1, the corresponding problem (1.1)
becomes:

minimize x21 + x22 + x23 + z + 1000(y1 + y2) + 1
2(y21 + y22)

subject to (x1 − 5)2 + (x2 − 2)2 + (x3 − 1)2 − 9− y1 ≤ 0,
(x1 − 3)2 + (x2 − 4)2 + (x3 − 3)2 − 9− y2 ≤ 0,
0 ≤ xj ≤ 5, j = 1, 2, 3, y1 ≥ 0, y2 ≥ 0, z ≥ 0.

(6.2)

With (x
(1)
1 , x

(1)
2 , x

(1)
3 ) = (4, 3, 2), it turned out that y

(k)
1 = y

(k)
2 = z(k)= 0 for all k, while

the iteration points and function values for k ≤ 7 are shown in the following tables:

MMA:

k x
(k)
1 x

(k)
2 x

(k)
3 f0(x

(k)) f1(x
(k)) f2(x

(k))

1 4.0000 3.0000 2.0000 29.0000 −6.0000 −6.0000

2 2.3903 1.8057 0.9929 9.9599 −2.1517 0.2152

3 2.0385 1.7624 1.2417 8.8030 −0.1143 0.0232

4 2.0178 1.7786 1.2392 8.7703 −0.0002 0.0000

5 2.0176 1.7794 1.2383 8.7702 0.0000 −0.0000

6 2.0176 1.7798 1.2378 8.7702 0.0000 −0.0000

7 2.0175 1.7800 1.2376 8.7702 −0.0000 −0.0000

GCMMA:

k x
(k)
1 x

(k)
2 x

(k)
3 f0(x

(k)) f1(x
(k)) f2(x

(k))

1 4.0000 3.0000 2.0000 29.0000 −6.0000 −6.0000

2 2.5550 1.8906 1.0765 11.2616 −3.0043 −0.6529

3 2.0722 1.7959 1.1910 8.9376 −0.3497 −0.0086

4 2.0162 1.7914 1.2244 8.7730 −0.0030 −0.0011

5 2.0170 1.7835 1.2335 8.7704 −0.0000 −0.0001

6 2.0174 1.7807 1.2367 8.7703 −0.0000 −0.0000

7 2.0175 1.7801 1.2374 8.7702 −0.0000 −0.0000

7. References

[1] K. Svanberg, The method of moving asymptotes – a new method for structural optimiza-
tion, International Journal for Numerical Methods in Engineering, 1987, 24, 359-373.

[2] K. Svanberg, A class of globally convergent optimization methods based on conservative
convex separable approximations, SIAM Journal of Optimization, 2002, 12, 555-573.

16


