You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

246 lines
9.2 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
#include "kelvinlets.h"
#include "PI.h"
#include "parallel_for.h"
namespace igl {
// Performs the deformation of a single point based on the regularized
// kelvinlets
//
// Inputs:
// dt delta time used to calculate brush tip displacement
// x dim-vector of point to be deformed
// x0 dim-vector of brush tip
// f dim-vector of brush force (translation)
// F dim by dim matrix of brush force matrix (linear)
// kp parameters for the kelvinlet brush like brush radius, scale etc
// Returns:
// X dim-vector of the new point x gets displaced to post deformation
template<typename Derivedx,
typename Derivedx0,
typename Derivedf,
typename DerivedF,
typename Scalar>
IGL_INLINE auto kelvinlet_evaluator(const Scalar dt,
const Eigen::MatrixBase<Derivedx>& x,
const Eigen::MatrixBase<Derivedx0>& x0,
const Eigen::MatrixBase<Derivedf>& f,
const Eigen::MatrixBase<DerivedF>& F,
const igl::KelvinletParams<Scalar>& kp)
-> Eigen::Matrix<Scalar, 3, 1>
{
static constexpr double POISSON_RATIO = 0.5;
static constexpr double SHEAR_MODULUS = 1;
static constexpr double a = 1 / (4 * igl::PI * SHEAR_MODULUS);
static constexpr double b = a / (4 * (1 - POISSON_RATIO));
static constexpr double c = 2 / (3 * a - 2 * b);
const auto linearVelocity = f / c / kp.epsilon;
const auto originAdjusted = x0 + linearVelocity * dt;
const auto r = x - originAdjusted;
const auto r_norm_sq = r.squaredNorm();
std::function<Eigen::Matrix<Scalar, 3, 1>(const Scalar&)> kelvinlet;
switch (kp.brushType) {
case igl::BrushType::GRAB: {
// Regularized Kelvinlets: Formula (6)
kelvinlet = [&r, &f, &r_norm_sq](const Scalar& epsilon) {
const auto r_epsilon = sqrt(r_norm_sq + epsilon * epsilon);
const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
auto t1 = ((a - b) / r_epsilon) * f;
auto t2 = ((b / r_epsilon_3) * r * r.transpose()) * f;
auto t3 = ((a * epsilon * epsilon) / (2 * r_epsilon_3)) * f;
return t1 + t2 + t3;
};
break;
}
case igl::BrushType::TWIST: {
// Regularized Kelvinlets: Formula (15)
kelvinlet = [&r, &F, &r_norm_sq](const Scalar& epsilon) {
const auto r_epsilon = sqrt(r_norm_sq + epsilon * epsilon);
const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
return -a *
(1 / (r_epsilon_3) +
3 * epsilon * epsilon /
(2 * r_epsilon_3 * r_epsilon * r_epsilon)) *
F * r;
};
break;
}
case igl::BrushType::SCALE: {
// Regularized Kelvinlets: Formula (16)
kelvinlet = [&r, &F, &r_norm_sq](const Scalar& epsilon) {
static constexpr auto b_compressible = a / 4; // assumes poisson ratio 0
const auto r_epsilon = sqrt(r_norm_sq + epsilon * epsilon);
const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
auto coeff =
(2 * b_compressible - a) *
(1 / (r_epsilon_3) +
3 * (epsilon * epsilon) / (2 * r_epsilon_3 * r_epsilon * r_epsilon));
return coeff * F * r;
};
break;
}
case igl::BrushType::PINCH: {
// Regularized Kelvinlets: Formula (17)
kelvinlet = [&r, &F, &r_norm_sq, &kp](const Scalar& epsilon) {
const auto r_epsilon = sqrt(r_norm_sq + kp.epsilon * kp.epsilon);
const auto r_epsilon_3 = r_epsilon * r_epsilon * r_epsilon;
auto t1 = ((2 * b - a) / r_epsilon_3) * F * r;
auto t2_coeff = 3 / (2 * r_epsilon * r_epsilon * r_epsilon_3);
auto t2 = t2_coeff * (2 * b * (r.transpose().dot(F * r)) * r +
a * epsilon * epsilon * epsilon * F * r);
return t1 - t2;
};
break;
}
}
if (kp.scale == 1) {
return kelvinlet(kp.ep[0]);
} else if (kp.scale == 2) {
// Regularized Kelvinlets: Formula (8)
return (kelvinlet(kp.ep[0]) - kelvinlet(kp.ep[1])) * 10;
}
// Regularized Kelvinlets: Formula (10)
return (kp.w[0] * kelvinlet(kp.ep[0]) + kp.w[1] * kelvinlet(kp.ep[1]) +
kp.w[2] * kelvinlet(kp.ep[2])) *
20;
};
// Implements the Bogacki-Shrampine ODE Solver
// https://en.wikipedia.org/wiki/Bogacki%E2%80%93Shampine_method
//
// It calculates the second and third order approximations which can be used to
// estimate the error in the integration step
//
// Inputs:
// t starting time
// dt delta time used to calculate brush tip displacement
// x dim-vector of point to be deformed
// x0 dim-vector of brush tip
// f dim-vector of brush force (translation)
// F dim by dim matrix of brush force matrix (linear)
// kp parameters for the kelvinlet brush like brush radius, scale etc
// Outputs:
// result dim vector holding the third order approximation result
// error The euclidean distance between the second and third order
// approximations
template<typename Scalar,
typename Derivedx,
typename Derivedx0,
typename Derivedf,
typename DerivedF>
IGL_INLINE void integrate(const Scalar t,
const Scalar dt,
const Eigen::MatrixBase<Derivedx>& x,
const Eigen::MatrixBase<Derivedx0>& x0,
const Eigen::MatrixBase<Derivedf>& f,
const Eigen::MatrixBase<DerivedF>& F,
const igl::KelvinletParams<Scalar>& kp,
Eigen::MatrixBase<Derivedx>& result,
Scalar& error)
{
constexpr Scalar a1 = 0;
constexpr Scalar a2 = 1 / 2.0f;
constexpr Scalar a3 = 3 / 4.0f;
constexpr Scalar a4 = 1.0f;
constexpr Scalar b21 = 1 / 2.0f;
constexpr Scalar b31 = 0;
constexpr Scalar b32 = 3 / 4.0f;
constexpr Scalar b41 = 2 / 9.0f;
constexpr Scalar b42 = 1 / 3.0f;
constexpr Scalar b43 = 4 / 9.0f;
constexpr Scalar c1 = 2 / 9.0f; // third order answer
constexpr Scalar c2 = 1 / 3.0f;
constexpr Scalar c3 = 4 / 9.0f;
constexpr Scalar d1 = 7 / 24.0f; // second order answer
constexpr Scalar d2 = 1 / 4.0f;
constexpr Scalar d3 = 1 / 3.0f;
constexpr Scalar d4 = 1 / 8.0f;
auto k1 = dt * kelvinlet_evaluator(t + dt * a1, x, x0, f, F, kp);
auto k2 = dt * kelvinlet_evaluator(t + dt * a2, x + k1 * b21, x0, f, F, kp);
auto k3 = dt * kelvinlet_evaluator(
t + dt * a3, x + k1 * b31 + k2 * b32, x0, f, F, kp);
auto k4 =
dt * kelvinlet_evaluator(
t + dt * a4, x + k1 * b41 + k2 * b42 + k3 * b43, x0, f, F, kp);
auto r1 = x + k1 * d1 + k2 * d2 + k3 * d3 + k4 * d4;
auto r2 = x + k1 * c1 + k2 * c2 + k3 * c3;
result = r2;
error = (r2 - r1).norm() / dt;
};
template<typename DerivedV,
typename Derivedx0,
typename Derivedf,
typename DerivedF,
typename DerivedU>
IGL_INLINE void kelvinlets(
const Eigen::MatrixBase<DerivedV>& V,
const Eigen::MatrixBase<Derivedx0>& x0,
const Eigen::MatrixBase<Derivedf>& f,
const Eigen::MatrixBase<DerivedF>& F,
const KelvinletParams<typename DerivedV::Scalar>& params,
Eigen::PlainObjectBase<DerivedU>& U)
{
using Scalar = typename DerivedV::Scalar;
constexpr auto max_error = 0.001f;
constexpr Scalar safety = 0.9;
const auto calc_displacement = [&](const int index) {
Scalar dt = 0.1;
Scalar t = 0;
Eigen::Matrix<Scalar, 3, 1> x = V.row(index).transpose();
decltype(x) result;
Scalar error;
// taking smaller steps seems to prevents weird inside-out artifacts in the
// final result. This implementation used an adaptive time step solver to
// numerically integrate the ODEs
while (t < 1) {
dt = std::min(dt, 1 - t);
integrate(t, dt, x, x0, f, F, params, result, error);
auto new_dt = dt * safety * std::pow(max_error / error, 1 / 3.0);
if (error <= max_error || dt <= 0.001) {
x = result;
t += dt;
dt = new_dt;
} else {
dt = std::max(abs(new_dt - dt) < 0.001 ? dt / 2.f : new_dt, 0.001);
}
}
U.row(index) = x.transpose();
};
const int n = V.rows();
U.resize(n, V.cols());
igl::parallel_for(n, calc_displacement, 1000);
}
}
#ifdef IGL_STATIC_LIBRARY
template void igl::kelvinlets<Eigen::Matrix<double, -1, -1, 0, -1, -1>,
Eigen::Matrix<double, 3, 1, 0, 3, 1>,
Eigen::Matrix<double, 3, 1, 0, 3, 1>,
Eigen::Matrix<double, 3, 3, 0, 3, 3>,
Eigen::Matrix<double, -1, -1, 0, -1, -1>>(
Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1>> const&,
Eigen::MatrixBase<Eigen::Matrix<double, 3, 1, 0, 3, 1>> const&,
Eigen::MatrixBase<Eigen::Matrix<double, 3, 1, 0, 3, 1>> const&,
Eigen::MatrixBase<Eigen::Matrix<double, 3, 3, 0, 3, 3>> const&,
igl::KelvinletParams<double> const&,
Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1>>&);
#endif