You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

246 lines
9.1 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_ARAP_ENERGY_TYPE_DOF_H
#define IGL_ARAP_ENERGY_TYPE_DOF_H
#include "igl_inline.h"
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include "ARAPEnergyType.h"
#include <vector>
/// @file arap_dof.h
/// @brief "Fast Automatic Skinning Transformations" [Jacobson et al.\ 2012]
///
/// Arap DOF precomputation consists of two parts the computation. The first is
/// that which depends solely on the mesh (V,F), the linear blend skinning
/// weights (M) and the groups G. Then there's the part that depends on the
/// previous precomputation and the list of free and fixed vertices.
///
///
/// #### Caller example:
///
/// Once:
/// arap_dof_precomputation(...)
///
/// Each frame:
/// while(not satisfied)
/// arap_dof_update(...)
/// end
/// The code and variables differ from the description in Section 3 of "Fast
/// Automatic Skinning Transformations" by [Jacobson et al. 2012]
///
/// Here is a useful conversion table:
///
/// [article] [code]
/// S = \tilde{K} T S = CSM * Lsep
/// S --> R S --> R --shuffled--> Rxyz
/// Gamma_solve RT = Pi_1 \tilde{K} RT L_part1xyz = CSolveBlock1 * Rxyz
/// Pi_1 \tilde{K} CSolveBlock1
/// Peq = [T_full; P_pos]
/// T_full B_eq_fix <--- L0
/// P_pos B_eq
/// Pi_2 * P_eq = Lpart2and3 = Lpart2 + Lpart3
/// Pi_2_left T_full + Lpart3 = M_fullsolve(right) * B_eq_fix
/// Pi_2_right P_pos Lpart2 = M_fullsolve(left) * B_eq
/// T = [Pi_1 Pi_2] [\tilde{K}TRT P_eq] L = Lpart1 + Lpart2and3
///
namespace igl
{
template <typename LbsMatrixType, typename SSCALAR>
struct ArapDOFData;
/// Precomputes the system to optimize for "Fast Automatic Skinning
/// Transformations" [Jacobson et al.\ 2012] skinning degrees of freedom
/// optimization using as-rigid-as-possible energy. This consists of building
/// constructor matrices (to compute covariance matrices from transformations
/// and to build the poisson solve right hand side from rotation matrix entries)
/// and also prefactoring the poisson system.
///
/// @param[in] V #V by dim list of vertex positions
/// @param[in] F #F by {3|4} list of face indices
/// @param[in] M #V * dim by #handles * dim * (dim+1) matrix such that
/// new_V(:) = LBS(V,W,A) = reshape(M * A,size(V)), where A is a column
/// vectors formed by the entries in each handle's dim by dim+1
/// transformation matrix. Specifcally, A =
/// reshape(permute(Astack,[3 1 2]),n*dim*(dim+1),1)
/// or A = [Lxx;Lyx;Lxy;Lyy;tx;ty], and likewise for other dim
/// if Astack(:,:,i) is the dim by (dim+1) transformation at handle i
/// handles are ordered according to P then BE (point handles before bone
/// handles)
/// @param[in] G #V list of group indices (1 to k) for each vertex, such that vertex i
/// is assigned to group G(i)
/// @param[out] data structure containing all necessary precomputation for calling
/// arap_dof_update
/// @return true on success, false on error
///
/// \see lbs_matrix_column
///
/// \fileinfo
template <typename LbsMatrixType, typename SSCALAR>
IGL_INLINE bool arap_dof_precomputation(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
const LbsMatrixType & M,
const Eigen::Matrix<int,Eigen::Dynamic,1> & G,
ArapDOFData<LbsMatrixType, SSCALAR> & data);
/// Should always be called after arap_dof_precomputation, but may be called in
/// between successive calls to arap_dof_update, recomputes precomputation
/// given that there are only changes in free and fixed
///
/// @param[in] fixed_dim list of transformation element indices for fixed (or partailly
/// fixed) handles: not necessarily the complement of 'free'
/// NOTE: the constraints for fixed transformations still need to be
/// present in A_eq
/// @param[in] A_eq dim*#constraint_points by m*dim*(dim+1) matrix of linear equality
/// constraint coefficients. Each row corresponds to a linear constraint,
/// so that A_eq * L = Beq says that the linear transformation entries in
/// the column L should produce the user supplied positional constraints
/// for each handle in Beq. The row A_eq(i*dim+d) corresponds to the
/// constrain on coordinate d of position i
/// @param[out] data structure containing all necessary precomputation for calling
/// arap_dof_update
/// @return true on success, false on error
///
/// \see lbs_matrix_column
///
/// \fileinfo
template <typename LbsMatrixType, typename SSCALAR>
IGL_INLINE bool arap_dof_recomputation(
const Eigen::Matrix<int,Eigen::Dynamic,1> & fixed_dim,
const Eigen::SparseMatrix<double> & A_eq,
ArapDOFData<LbsMatrixType, SSCALAR> & data);
/// Optimizes the transformations attached to each weight function based on
/// precomputed system.
///
/// @param[in] data precomputation data struct output from arap_dof_precomputation
/// @param[in] Beq dim*#constraint_points constraint values.
/// @param[in] L0 #handles * dim * dim+1 list of initial guess transformation entries,
/// also holds fixed transformation entries for fixed handles
/// @param[in] max_iters maximum number of iterations
/// @param[in] tol stopping criteria parameter. If variables (linear transformation
/// matrix entries) change by less than 'tol' the optimization terminates,
/// 0.75 (weak tolerance)
/// 0.0 (extreme tolerance)
/// @param[out] L #handles * dim * dim+1 list of final optimized transformation entries,
/// allowed to be the same as L
///
/// \fileinfo
template <typename LbsMatrixType, typename SSCALAR>
IGL_INLINE bool arap_dof_update(
const ArapDOFData<LbsMatrixType,SSCALAR> & data,
const Eigen::Matrix<double,Eigen::Dynamic,1> & B_eq,
const Eigen::MatrixXd & L0,
const int max_iters,
const double tol,
Eigen::MatrixXd & L
);
/// Structure that contains fields for all precomputed data or data that needs
/// to be remembered at update
///
/// \fileinfo
template <typename LbsMatrixType, typename SSCALAR>
struct ArapDOFData
{
/// Matrix with SSCALAR type
typedef Eigen::Matrix<SSCALAR, Eigen::Dynamic, Eigen::Dynamic> MatrixXS;
/// Type of arap energy we're solving
igl::ARAPEnergyType energy;
/// List of indices of fixed transformation entries
Eigen::Matrix<int,Eigen::Dynamic,1> fixed_dim;
/// List of precomputed covariance scatter matrices multiplied by lbs
/// matrices
std::vector<Eigen::MatrixXd> CSM_M;
/// @private
LbsMatrixType M_KG;
/// Number of mesh vertices
int n;
/// Number of weight functions
int m;
/// Number of dimensions
int dim;
/// Effective dimensions
int effective_dim;
/// List of indices into C of positional constraints
Eigen::Matrix<int,Eigen::Dynamic,1> interpolated;
/// Mask of free variables
std::vector<bool> free_mask;
/// Full quadratic coefficients matrix before lagrangian (should be dense)
LbsMatrixType Q;
//// Solve matrix for the global step
//Eigen::MatrixXd M_Solve; // TODO: remove from here
/// Full solve matrix that contains also conversion from rotations to the right hand side,
/// i.e., solves Poisson transformations just from rotations and positional constraints
MatrixXS M_FullSolve;
/// Precomputed condensed matrices (3x3 commutators folded to 1x1):
MatrixXS CSM;
/// @private
MatrixXS CSolveBlock1;
/// Print timings at each update
bool print_timings;
/// dynamics
bool with_dynamics;
// I'm hiding the extra dynamics stuff in this struct, which sort of defeats
// the purpose of this function-based coding style...
/// Time step
double h;
/// #handles * dim * dim+1 list of transformation entries from
/// previous solve
MatrixXS L0;
//// Lm1 #handles * dim * dim+1 list of transformation entries from
//// previous-previous solve
//MatrixXS Lm1;
/// "Velocity"
MatrixXS Lvel0;
/// #V by dim matrix of external forces
MatrixXS fext;
/// Mass_tilde: MT * Mass * M
LbsMatrixType Mass_tilde;
/// Force due to gravity (premultiplier)
Eigen::MatrixXd fgrav;
/// Direction of gravity
Eigen::Vector3d grav_dir;
/// Magnitude of gravity
double grav_mag;
/// Π1 from the paper
MatrixXS Pi_1;
// @private Default values
ArapDOFData():
energy(igl::ARAP_ENERGY_TYPE_SPOKES),
with_dynamics(false),
h(1),
grav_dir(0,-1,0),
grav_mag(0)
{
}
};
}
#ifndef IGL_STATIC_LIBRARY
# include "arap_dof.cpp"
#endif
#endif