You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

396 lines
10 KiB

#include "EmbreeIntersector.h"
// Implementation
#include "../EPS.h"
IGL_INLINE igl::embree::EmbreeIntersector::EmbreeIntersector()
:
//scene(NULL),
geomID(0),
vertices(NULL),
triangles(NULL),
initialized(false),
device(igl::embree::EmbreeDevice::get_device())
{
}
IGL_INLINE igl::embree::EmbreeIntersector::EmbreeIntersector(
const EmbreeIntersector &)
:// To make -Weffc++ happy
//scene(NULL),
geomID(0),
vertices(NULL),
triangles(NULL),
initialized(false)
{
assert(false && "Embree: Copying EmbreeIntersector is not allowed");
}
IGL_INLINE igl::embree::EmbreeIntersector & igl::embree::EmbreeIntersector::operator=(
const EmbreeIntersector &)
{
assert(false && "Embree: Assigning an EmbreeIntersector is not allowed");
return *this;
}
IGL_INLINE void igl::embree::EmbreeIntersector::init(
const PointMatrixType& V,
const FaceMatrixType& F,
bool isStatic)
{
std::vector<const PointMatrixType*> Vtemp;
std::vector<const FaceMatrixType*> Ftemp;
std::vector<int> masks;
Vtemp.push_back(&V);
Ftemp.push_back(&F);
masks.push_back(0xFFFFFFFF);
init(Vtemp,Ftemp,masks,isStatic);
}
IGL_INLINE void igl::embree::EmbreeIntersector::init(
const std::vector<const PointMatrixType*>& V,
const std::vector<const FaceMatrixType*>& F,
const std::vector<int>& masks,
bool isStatic)
{
if(initialized)
deinit();
using namespace std;
if(V.size() == 0 || F.size() == 0)
{
std::cerr << "Embree: No geometry specified!";
return;
}
RTCBuildQuality buildQuality = isStatic ? RTC_BUILD_QUALITY_HIGH : RTC_BUILD_QUALITY_MEDIUM;
// create a scene
scene = rtcNewScene(device);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST);
rtcSetSceneBuildQuality(scene, buildQuality);
for(int g=0;g<(int)V.size();g++)
{
// create triangle mesh geometry in that scene
RTCGeometry geom_0 = rtcNewGeometry (device, RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetGeometryBuildQuality(geom_0,buildQuality);
rtcSetGeometryTimeStepCount(geom_0,1);
geomID = rtcAttachGeometry(scene,geom_0);
rtcReleaseGeometry(geom_0);
// fill vertex buffer
vertices = (Vertex*)rtcSetNewGeometryBuffer(geom_0,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,4*sizeof(float),V[g]->rows());
for(int i=0;i<(int)V[g]->rows();i++)
{
vertices[i].x = (float)V[g]->coeff(i,0);
vertices[i].y = (float)V[g]->coeff(i,1);
vertices[i].z = (float)V[g]->coeff(i,2);
}
// fill triangle buffer
triangles = (Triangle*) rtcSetNewGeometryBuffer(geom_0,RTC_BUFFER_TYPE_INDEX,0,RTC_FORMAT_UINT3,3*sizeof(int),F[g]->rows());
for(int i=0;i<(int)F[g]->rows();i++)
{
triangles[i].v0 = (int)F[g]->coeff(i,0);
triangles[i].v1 = (int)F[g]->coeff(i,1);
triangles[i].v2 = (int)F[g]->coeff(i,2);
}
rtcSetGeometryMask(geom_0,masks[g]);
rtcCommitGeometry(geom_0);
}
rtcCommitScene(scene);
if(rtcGetDeviceError (device) != RTC_ERROR_NONE)
std::cerr << "Embree: An error occurred while initializing the provided geometry!" << endl;
#ifdef IGL_VERBOSE
else
std::cerr << "Embree: geometry added." << endl;
#endif
initialized = true;
}
IGL_INLINE igl::embree::EmbreeIntersector
::~EmbreeIntersector()
{
if(initialized)
deinit();
igl::embree::EmbreeDevice::release_device();
}
IGL_INLINE void igl::embree::EmbreeIntersector::deinit()
{
if(device && scene)
{
rtcReleaseScene(scene);
if(rtcGetDeviceError (device) != RTC_ERROR_NONE)
{
std::cerr << "Embree: An error occurred while resetting!" << std::endl;
}
#ifdef IGL_VERBOSE
else
{
std::cerr << "Embree: geometry removed." << std::endl;
}
#endif
}
}
IGL_INLINE bool igl::embree::EmbreeIntersector::intersectRay(
const Eigen::RowVector3f& origin,
const Eigen::RowVector3f& direction,
Hit& hit,
float tnear,
float tfar,
int mask) const
{
RTCRayHit ray; // EMBREE_FIXME: use RTCRay for occlusion rays
ray.ray.flags = 0;
createRay(ray, origin,direction,tnear,tfar,mask);
// shot ray
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
rtcIntersect1(scene,&context,&ray);
ray.hit.Ng_x = -ray.hit.Ng_x; // EMBREE_FIXME: only correct for triangles,quads, and subdivision surfaces
ray.hit.Ng_y = -ray.hit.Ng_y;
ray.hit.Ng_z = -ray.hit.Ng_z;
}
#ifdef IGL_VERBOSE
if(rtcGetDeviceError (device) != RTC_ERROR_NONE)
std::cerr << "Embree: An error occurred while resetting!" << std::endl;
#endif
if((unsigned)ray.hit.geomID != RTC_INVALID_GEOMETRY_ID)
{
hit.id = ray.hit.primID;
hit.gid = ray.hit.geomID;
hit.u = ray.hit.u;
hit.v = ray.hit.v;
hit.t = ray.ray.tfar;
return true;
}
return false;
}
IGL_INLINE bool igl::embree::EmbreeIntersector::intersectBeam(
const Eigen::RowVector3f& origin,
const Eigen::RowVector3f& direction,
Hit& hit,
float tnear,
float tfar,
int mask,
int geoId,
bool closestHit,
unsigned int samples) const
{
bool hasHit = false;
Hit bestHit;
if(closestHit)
bestHit.t = std::numeric_limits<float>::max();
else
bestHit.t = 0;
if((intersectRay(origin,direction,hit,tnear,tfar,mask) && (hit.gid == geoId || geoId == -1)))
{
bestHit = hit;
hasHit = true;
}
// sample points around actual ray (conservative hitcheck)
const float eps= 1e-5;
Eigen::RowVector3f up(0,1,0);
if (direction.cross(up).norm() < eps) up = Eigen::RowVector3f(1,0,0);
Eigen::RowVector3f offset = direction.cross(up).normalized();
Eigen::Matrix3f rot = Eigen::AngleAxis<float>(2*3.14159265358979/samples,direction).toRotationMatrix();
for(int r=0;r<(int)samples;r++)
{
if(intersectRay(origin+offset*eps,direction,hit,tnear,tfar,mask) &&
((closestHit && (hit.t < bestHit.t)) ||
(!closestHit && (hit.t > bestHit.t))) &&
(hit.gid == geoId || geoId == -1))
{
bestHit = hit;
hasHit = true;
}
offset = rot*offset.transpose();
}
hit = bestHit;
return hasHit;
}
IGL_INLINE bool
igl::embree::EmbreeIntersector
::intersectRay(
const Eigen::RowVector3f& origin,
const Eigen::RowVector3f& direction,
std::vector<Hit > &hits,
int& num_rays,
float tnear,
float tfar,
int mask) const
{
using namespace std;
num_rays = 0;
hits.clear();
int last_id0 = -1;
double self_hits = 0;
// This epsilon is directly correleated to the number of missed hits, smaller
// means more accurate and slower
//const double eps = DOUBLE_EPS;
const double eps = FLOAT_EPS;
double min_t = tnear;
bool large_hits_warned = false;
RTCRayHit ray; // EMBREE_FIXME: use RTCRay for occlusion rays
ray.ray.flags = 0;
createRay(ray,origin,direction,tnear,tfar,mask);
while(true)
{
ray.ray.tnear = min_t;
ray.ray.tfar = tfar;
ray.hit.geomID = RTC_INVALID_GEOMETRY_ID;
ray.hit.primID = RTC_INVALID_GEOMETRY_ID;
ray.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;
num_rays++;
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
rtcIntersect1(scene,&context,&ray);
ray.hit.Ng_x = -ray.hit.Ng_x; // EMBREE_FIXME: only correct for triangles,quads, and subdivision surfaces
ray.hit.Ng_y = -ray.hit.Ng_y;
ray.hit.Ng_z = -ray.hit.Ng_z;
}
if((unsigned)ray.hit.geomID != RTC_INVALID_GEOMETRY_ID)
{
// Hit self again, progressively advance
if(ray.hit.primID == last_id0 || ray.ray.tfar <= min_t)
{
// push min_t a bit more
//double t_push = pow(2.0,self_hits-4)*(hit.t<eps?eps:hit.t);
double t_push = pow(2.0,self_hits)*eps;
#ifdef IGL_VERBOSE
std::cerr<<" t_push: "<<t_push<<endl;
#endif
//o = o+t_push*d;
min_t += t_push;
self_hits++;
}
else
{
Hit hit;
hit.id = ray.hit.primID;
hit.gid = ray.hit.geomID;
hit.u = ray.hit.u;
hit.v = ray.hit.v;
hit.t = ray.ray.tfar;
hits.push_back(hit);
#ifdef IGL_VERBOSE
std::cerr<<" t: "<<hit.t<<endl;
#endif
// Instead of moving origin, just change min_t. That way calculations
// all use exactly same origin values
min_t = ray.ray.tfar;
// reset t_scale
self_hits = 0;
}
last_id0 = ray.hit.primID;
}
else
break; // no more hits
if(hits.size()>1000 && !large_hits_warned)
{
std::cout<<"Warning: Large number of hits..."<<endl;
std::cout<<"[ ";
for(vector<Hit>::iterator hit = hits.begin(); hit != hits.end();hit++)
{
std::cout<<(hit->id+1)<<" ";
}
std::cout.precision(std::numeric_limits< double >::digits10);
std::cout<<"[ ";
for(vector<Hit>::iterator hit = hits.begin(); hit != hits.end(); hit++)
{
std::cout<<(hit->t)<<endl;;
}
std::cout<<"]"<<endl;
large_hits_warned = true;
return hits.empty();
}
}
return hits.empty();
}
IGL_INLINE bool
igl::embree::EmbreeIntersector
::intersectSegment(const Eigen::RowVector3f& a, const Eigen::RowVector3f& ab, Hit &hit, int mask) const
{
RTCRayHit ray; // EMBREE_FIXME: use RTCRay for occlusion rays
ray.ray.flags = 0;
createRay(ray,a,ab,0,1.0,mask);
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
rtcIntersect1(scene,&context,&ray);
ray.hit.Ng_x = -ray.hit.Ng_x; // EMBREE_FIXME: only correct for triangles,quads, and subdivision surfaces
ray.hit.Ng_y = -ray.hit.Ng_y;
ray.hit.Ng_z = -ray.hit.Ng_z;
}
if((unsigned)ray.hit.geomID != RTC_INVALID_GEOMETRY_ID)
{
hit.id = ray.hit.primID;
hit.gid = ray.hit.geomID;
hit.u = ray.hit.u;
hit.v = ray.hit.v;
hit.t = ray.ray.tfar;
return true;
}
return false;
}
IGL_INLINE void
igl::embree::EmbreeIntersector
::createRay(RTCRayHit& ray, const Eigen::RowVector3f& origin, const Eigen::RowVector3f& direction, float tnear, float tfar, int mask) const
{
ray.ray.org_x = origin[0];
ray.ray.org_y = origin[1];
ray.ray.org_z = origin[2];
ray.ray.dir_x = direction[0];
ray.ray.dir_y = direction[1];
ray.ray.dir_z = direction[2];
ray.ray.tnear = tnear;
ray.ray.tfar = tfar;
ray.ray.id = RTC_INVALID_GEOMETRY_ID;
ray.ray.mask = mask;
ray.ray.time = 0.0f;
ray.hit.geomID = RTC_INVALID_GEOMETRY_ID;
ray.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;
ray.hit.primID = RTC_INVALID_GEOMETRY_ID;
}