You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

268 lines
10 KiB

// This file is part of libigl, a simple C++ geometry processing library.
//
// Copyright (C) 2020 Xiangyu Kong <xiangyu.kong@mail.utoronto.ca>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "direct_delta_mush.h"
#include "cotmatrix.h"
template <
typename DerivedV,
typename DerivedOmega,
typename DerivedU>
IGL_INLINE void igl::direct_delta_mush(
const Eigen::MatrixBase<DerivedV> & V,
const std::vector<Eigen::Affine3d, Eigen::aligned_allocator<Eigen::Affine3d> > & T,
const Eigen::MatrixBase<DerivedOmega> & Omega,
Eigen::PlainObjectBase<DerivedU> & U)
{
using namespace Eigen;
// Shape checks
assert(V.cols() == 3 && "V should contain 3D positions.");
assert(Omega.rows() == V.rows() && "Omega contain the same number of rows as V.");
assert(Omega.cols() == T.size() * 10 && "Omega should have #T*10 columns.");
typedef typename DerivedV::Scalar Scalar;
int n = V.rows();
int m = T.size();
// V_homogeneous: #V by 4, homogeneous version of V
// Note:
// In the paper, the rest pose vertices are represented in U \in R^{4 x #V}
// Thus the formulae involving U would differ from the paper by a transpose.
Matrix<Scalar, Dynamic, 4> V_homogeneous(n, 4);
V_homogeneous << V, Matrix<Scalar, Dynamic, 1>::Ones(n, 1);
U.resize(n, 3);
for (int i = 0; i < n; ++i)
{
// Construct Q matrix using Omega and Transformations
Matrix<Scalar, 4, 4> Q_mat(4, 4);
Q_mat = Matrix<Scalar, 4, 4>::Zero(4, 4);
for (int j = 0; j < m; ++j)
{
Matrix<typename DerivedOmega::Scalar, 4, 4> Omega_curr(4, 4);
Matrix<typename DerivedOmega::Scalar, 10, 1> curr = Omega.block(i, j * 10, 1, 10).transpose();
Omega_curr << curr(0), curr(1), curr(2), curr(3),
curr(1), curr(4), curr(5), curr(6),
curr(2), curr(5), curr(7), curr(8),
curr(3), curr(6), curr(8), curr(9);
Affine3d M_curr = T[j];
Q_mat += M_curr.matrix() * Omega_curr;
}
// Normalize so that the last element is 1
Q_mat /= Q_mat(Q_mat.rows() - 1, Q_mat.cols() - 1);
Matrix<Scalar, 3, 3> Q_i = Q_mat.block(0, 0, 3, 3);
Matrix<Scalar, 3, 1> q_i = Q_mat.block(0, 3, 3, 1);
Matrix<Scalar, 3, 1> p_i = Q_mat.block(3, 0, 1, 3).transpose();
// Get rotation and translation matrices using SVD
Matrix<Scalar, 3, 3> SVD_i = Q_i - q_i * p_i.transpose();
JacobiSVD<Matrix<Scalar, 3, 3>> svd;
svd.compute(SVD_i, ComputeFullU | ComputeFullV);
Matrix<Scalar, 3, 3> R_i = svd.matrixU() * svd.matrixV().transpose();
Matrix<Scalar, 3, 1> t_i = q_i - R_i * p_i;
// Gamma final transformation matrix
Matrix<Scalar, 3, 4> Gamma_i(3, 4);
Gamma_i.block(0, 0, 3, 3) = R_i;
Gamma_i.block(0, 3, 3, 1) = t_i;
// Final deformed position
Matrix<Scalar, 4, 1> v_i = V_homogeneous.row(i);
U.row(i) = Gamma_i * v_i;
}
}
template <
typename DerivedV,
typename DerivedF,
typename DerivedW,
typename DerivedOmega>
IGL_INLINE void igl::direct_delta_mush_precomputation(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<DerivedW> & W,
const int p,
const typename DerivedV::Scalar lambda,
const typename DerivedV::Scalar kappa,
const typename DerivedV::Scalar alpha,
Eigen::PlainObjectBase<DerivedOmega> & Omega)
{
using namespace Eigen;
// Shape checks
assert(V.cols() == 3 && "V should contain 3D positions.");
assert(F.cols() == 3 && "F should contain triangles.");
assert(W.rows() == V.rows() && "W.rows() should be equal to V.rows().");
// Parameter checks
assert(p > 0 && "Laplacian iteration p should be positive.");
assert(lambda > 0 && "lambda should be positive.");
assert(kappa > 0 && kappa < lambda && "kappa should be positive and less than lambda.");
assert(alpha >= 0 && alpha < 1 && "alpha should be non-negative and less than 1.");
typedef typename DerivedV::Scalar Scalar;
// lambda helper
// Given a square matrix, extract the upper triangle (including diagonal) to an array.
// E.g. 1 2 3 4
// 5 6 7 8 -> [1, 2, 3, 4, 6, 7, 8, 11, 12, 16]
// 9 10 11 12 0 1 2 3 4 5 6 7 8 9
// 13 14 15 16
auto extract_upper_triangle = [](
const Matrix<Scalar, Dynamic, Dynamic> & full) -> Matrix<Scalar, Dynamic, 1>
{
int dims = full.rows();
Matrix<Scalar, Dynamic, 1> upper_triangle((dims * (dims + 1)) / 2);
int vector_idx = 0;
for (int i = 0; i < dims; ++i)
{
for (int j = i; j < dims; ++j)
{
upper_triangle(vector_idx) = full(i, j);
vector_idx++;
}
}
return upper_triangle;
};
const int n = V.rows();
const int m = W.cols();
// V_homogeneous: #V by 4, homogeneous version of V
// Note:
// in the paper, the rest pose vertices are represented in U \in R^{4 \times #V}
// Thus the formulae involving U would differ from the paper by a transpose.
Matrix<Scalar, Dynamic, 4> V_homogeneous(n, 4);
V_homogeneous << V, Matrix<Scalar, Dynamic, 1>::Ones(n);
// Identity matrix of #V by #V
SparseMatrix<Scalar> I(n, n);
I.setIdentity();
// Laplacian matrix of #V by #V
// L_bar = L \times D_L^{-1}
SparseMatrix<Scalar> L;
igl::cotmatrix(V, F, L);
L = -L;
// Inverse of diagonal matrix = reciprocal elements in diagonal
Matrix<Scalar, Dynamic, 1> D_L = L.diagonal();
// D_L = D_L.array().pow(-1); // Not using this since not sure if diagonal contains 0
for (int i = 0; i < D_L.size(); ++i)
{
if (D_L(i) != 0)
{
D_L(i) = 1 / D_L(i);
}
}
SparseMatrix<Scalar> D_L_inv = D_L.asDiagonal().toDenseMatrix().sparseView();
SparseMatrix<Scalar> L_bar = L * D_L_inv;
// Implicitly and iteratively solve for W'
// w'_{ij} = \sum_{k=1}^{n}{C_{ki} w_{kj}} where C = (I + kappa L_bar)^{-p}:
// W' = C^T \times W => c^T W_k = W_{k-1} where c = (I + kappa L_bar)
// C positive semi-definite => ldlt solver
SimplicialLDLT<SparseMatrix<Scalar>> ldlt_W_prime;
SparseMatrix<Scalar> c(I + kappa * L_bar);
// working copy
DerivedW W_prime(W);
ldlt_W_prime.compute(c.transpose());
for (int iter = 0; iter < p; ++iter)
{
W_prime = ldlt_W_prime.solve(W_prime);
}
// U_precomputed: #V by 10
// Cache u_i^T \dot u_i \in R^{4 x 4} to reduce computation time.
Matrix<Scalar, Dynamic, 10> U_precomputed(n, 10);
for (int k = 0; k < n; ++k)
{
Matrix<Scalar, 4, 4> u_full = V_homogeneous.row(k).transpose() * V_homogeneous.row(k);
U_precomputed.row(k) = extract_upper_triangle(u_full);
}
// U_prime: #V by #T*10 of u_{jx}
// Each column of U_prime (u_{jx}) is the element-wise product of
// W_j and U_precomputed_x where j \in {1...m}, x \in {1...10}
Matrix<Scalar, Dynamic, Dynamic> U_prime(n, m * 10);
for (int j = 0; j < m; ++j)
{
Matrix<Scalar, Dynamic, 1> w_j = W.col(j);
for (int x = 0; x < 10; ++x)
{
Matrix<Scalar, Dynamic, 1> u_x = U_precomputed.col(x);
U_prime.col(10 * j + x) = w_j.array() * u_x.array();
}
}
// Implicitly and iteratively solve for Psi: #V by #T*10 of \Psi_{ij}s.
// Note: Using dense matrices to solve for Psi will cause the program to hang.
// The following won't work
// Matrix<Scalar, Dynamic, Dynamic> Psi(U_prime);
// Matrix<Scalar, Dynamic, Dynamic> b((I + lambda * L_bar).transpose());
// for (int iter = 0; iter < p; ++iter)
// {
// Psi = b.ldlt().solve(Psi); // hangs here
// }
// Convert to sparse matrices and compute
Matrix<Scalar, Dynamic, Dynamic> Psi = U_prime.sparseView();
SparseMatrix<Scalar> b = (I + lambda * L_bar).transpose();
SimplicialLDLT<SparseMatrix<Scalar>> ldlt_Psi;
ldlt_Psi.compute(b);
for (int iter = 0; iter < p; ++iter)
{
Psi = ldlt_Psi.solve(Psi);
}
// P: #V by 10 precomputed upper triangle of
// p_i p_i^T , p_i
// p_i^T , 1
// where p_i = (\sum_{j=1}^{n} Psi_{ij})'s top right 3 by 1 column
Matrix<Scalar, Dynamic, 10> P(n, 10);
for (int i = 0; i < n; ++i)
{
Matrix<Scalar, 3, 1> p_i = Matrix<Scalar, 3, 1>::Zero(3);
Scalar last = 0;
for (int j = 0; j < m; ++j)
{
Matrix<Scalar, 3, 1> p_i_curr(3);
p_i_curr << Psi(i, j * 10 + 3), Psi(i, j * 10 + 6), Psi(i, j * 10 + 8);
p_i += p_i_curr;
last += Psi(i, j * 10 + 9);
}
p_i /= last; // normalize
Matrix<Scalar, 4, 4> p_matrix(4, 4);
p_matrix.block(0, 0, 3, 3) = p_i * p_i.transpose();
p_matrix.block(0, 3, 3, 1) = p_i;
p_matrix.block(3, 0, 1, 3) = p_i.transpose();
p_matrix(3, 3) = 1;
P.row(i) = extract_upper_triangle(p_matrix);
}
// Omega
Omega.resize(n, m * 10);
for (int i = 0; i < n; ++i)
{
Matrix<Scalar, 10, 1> p_vector = P.row(i);
for (int j = 0; j < m; ++j)
{
Matrix<Scalar, 10, 1> Omega_curr(10);
Matrix<Scalar, 10, 1> Psi_curr = Psi.block(i, j * 10, 1, 10).transpose();
Omega_curr = (1. - alpha) * Psi_curr + alpha * W_prime(i, j) * p_vector;
Omega.block(i, j * 10, 1, 10) = Omega_curr.transpose();
}
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::direct_delta_mush<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, std::vector<Eigen::Transform<double, 3, 2, 0>, Eigen::aligned_allocator<Eigen::Transform<double, 3, 2, 0> > > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&); template void igl::direct_delta_mush_precomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, int, Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar, Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar, Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
#endif