You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

230 lines
8.2 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "cotmatrix.h"
#include <vector>
// For error printing
#include <cstdio>
#include "cotmatrix_entries.h"
// Bug in unsupported/Eigen/SparseExtra needs iostream first
#include <iostream>
template <typename DerivedV, typename DerivedF, typename Scalar>
IGL_INLINE void igl::cotmatrix(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
Eigen::SparseMatrix<Scalar>& L)
{
using namespace Eigen;
using namespace std;
L.resize(V.rows(),V.rows());
Matrix<int,Dynamic,2> edges;
int simplex_size = F.cols();
// 3 for triangles, 4 for tets
assert(simplex_size == 3 || simplex_size == 4);
if(simplex_size == 3)
{
// This is important! it could decrease the comptuation time by a factor of 2
// Laplacian for a closed 2d manifold mesh will have on average 7 entries per
// row
L.reserve(10*V.rows());
edges.resize(3,2);
edges <<
1,2,
2,0,
0,1;
}else if(simplex_size == 4)
{
L.reserve(17*V.rows());
edges.resize(6,2);
edges <<
1,2,
2,0,
0,1,
3,0,
3,1,
3,2;
}else
{
return;
}
// Gather cotangents
Matrix<Scalar,Dynamic,Dynamic> C;
cotmatrix_entries(V,F,C);
vector<Triplet<Scalar> > IJV;
IJV.reserve(F.rows()*edges.rows()*4);
// Loop over triangles
for(int i = 0; i < F.rows(); i++)
{
// loop over edges of element
for(int e = 0;e<edges.rows();e++)
{
int source = F(i,edges(e,0));
int dest = F(i,edges(e,1));
IJV.push_back(Triplet<Scalar>(source,dest,C(i,e)));
IJV.push_back(Triplet<Scalar>(dest,source,C(i,e)));
IJV.push_back(Triplet<Scalar>(source,source,-C(i,e)));
IJV.push_back(Triplet<Scalar>(dest,dest,-C(i,e)));
}
}
L.setFromTriplets(IJV.begin(),IJV.end());
}
#include "massmatrix.h"
#include "cotmatrix_entries.h"
#include "massmatrix.h"
#include <Eigen/Geometry>
#include <Eigen/QR>
template <
typename DerivedV,
typename DerivedI,
typename DerivedC,
typename Scalar>
IGL_INLINE void igl::cotmatrix(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedI> & I,
const Eigen::MatrixBase<DerivedC> & C,
Eigen::SparseMatrix<Scalar>& L,
Eigen::SparseMatrix<Scalar>& M,
Eigen::SparseMatrix<Scalar>& P)
{
typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> MatrixXS;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> VectorXS;
typedef Eigen::Index Index;
// number of vertices
const Index n = V.rows();
// number of polyfaces
const Index m = C.size()-1;
assert(V.cols() == 2 || V.cols() == 3);
std::vector<Eigen::Triplet<Scalar> > Lfijv;
std::vector<Eigen::Triplet<Scalar> > Mfijv;
std::vector<Eigen::Triplet<Scalar> > Pijv;
// loop over vertices; set identity for original vertices
for(Index i = 0;i<V.rows();i++) { Pijv.emplace_back(i,i,1); }
// loop over faces
for(Index p = 0;p<C.size()-1;p++)
{
// number of faces/vertices in this simple polygon
const Index np = C(p+1)-C(p);
// Working "local" list of vertices; last vertex is new one
// this needs to have 3 columns so Eigen doesn't complain about cross
// products below.
Eigen::Matrix<Scalar,Eigen::Dynamic,3> X = decltype(X)::Zero(np+1,3);
for(Index i = 0;i<np;i++){ X.row(i).head(V.cols()) = V.row(I(C(p)+i)); };
// determine weights definig position of inserted vertex
{
MatrixXS A = decltype(A)::Zero(np+1,np);
// My equation (38) would be A w = b.
VectorXS b = decltype(b)::Zero(np+1);
for(Index k = 0;k<np;k++)
{
const RowVector3S Xkp1mk = X.row((k+1)%np)-X.row(k);
const RowVector3S Xkp1mkck = Xkp1mk.cross(X.row(k));
for(Index i = 0;i<np;i++)
{
b(i) -= 2.*(X.row(i).cross(Xkp1mk)).dot(Xkp1mkck);
for(Index j = 0;j<np;j++)
{
A(i,j) += 2.*(X.row(j).cross(Xkp1mk)).dot(X.row(i).cross(Xkp1mk));
}
}
}
A.row(np).setConstant(1);
b(np) = 1;
const VectorXS w =
Eigen::CompleteOrthogonalDecomposition<Eigen::MatrixXd>(A).solve(b);
X.row(np) = w.transpose()*X.topRows(np);
// scatter w into new row of P
for(Index i = 0;i<np;i++) { Pijv.emplace_back(n+p,I(C(p)+i),w(i)); }
}
// "local" fan of faces. These could be statically cached, but this will
// not be the bottleneck.
Eigen::MatrixXi F(np,3);
for(Index i = 0;i<np;i++)
{
F(i,0) = i;
F(i,1) = (i+1)%np;
F(i,2) = np;
}
// Cotangent contributions
MatrixXS K;
igl::cotmatrix_entries(X,F,K);
// Massmatrix entried
VectorXS Mp;
{
Eigen::SparseMatrix<Scalar> M;
igl::massmatrix(X,F,igl::MASSMATRIX_TYPE_DEFAULT,M);
Mp = M.diagonal();
}
// Scatter into fine Laplacian and mass matrices
const auto J = [&n,&np,&p,&I,&C](Index i)->Index{return i==np?n+p:I(C(p)+i);};
// Should just build Mf as a vector...
for(Index i = 0;i<np+1;i++) { Mfijv.emplace_back(J(i),J(i),Mp(i)); }
// loop over faces
for(Index f = 0;f<np;f++)
{
for(Index c = 0;c<3;c++)
{
const Index i = F(f,(c+1)%3);
const Index j = F(f,(c+2)%3);
// symmetric off-diagonal
Lfijv.emplace_back(J(i),J(j),K(f,c));
Lfijv.emplace_back(J(j),J(i),K(f,c));
// diagonal
Lfijv.emplace_back(J(i),J(i),-K(f,c));
Lfijv.emplace_back(J(j),J(j),-K(f,c));
}
}
}
P.resize(n+m,n);
P.setFromTriplets(Pijv.begin(),Pijv.end());
Eigen::SparseMatrix<Scalar> Lf(n+m,n+m);
Lf.setFromTriplets(Lfijv.begin(),Lfijv.end());
Eigen::SparseMatrix<Scalar> Mf(n+m,n+m);
Mf.setFromTriplets(Mfijv.begin(),Mfijv.end());
L = P.transpose() * Lf * P;
// "unlumped" M
const Eigen::SparseMatrix<Scalar> PTMP = P.transpose() * Mf * P;
// Lump M
const VectorXS Mdiag = PTMP * VectorXS::Ones(n,1);
M = Eigen::SparseMatrix<Scalar>(Mdiag.asDiagonal());
MatrixXS Vf = P*V;
Eigen::MatrixXi Ff(I.size(),3);
{
Index f = 0;
for(Index p = 0;p<C.size()-1;p++)
{
const Index np = C(p+1)-C(p);
for(Index c = 0;c<np;c++)
{
Ff(f,0) = I(C(p)+c);
Ff(f,1) = I(C(p)+(c+1)%np);
Ff(f,2) = V.rows()+p;
f++;
}
}
assert(f == Ff.rows());
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::cotmatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int>&, Eigen::SparseMatrix<double, 0, int>&, Eigen::SparseMatrix<double, 0, int>&);
// generated by autoexplicit.sh
template void igl::cotmatrix<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&);
template void igl::cotmatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 4, 0, -1, 4>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 4, 0, -1, 4> > const&, Eigen::SparseMatrix<double, 0, int>&);
template void igl::cotmatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::SparseMatrix<double, 0, int>&);
template void igl::cotmatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&);
#endif