You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
784 lines
20 KiB
784 lines
20 KiB
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2014 Daniele Panozzo <daniele.panozzo@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "nrosy.h"
|
|
|
|
#include "nrosy.h"
|
|
#include "../../triangle_triangle_adjacency.h"
|
|
#include "../../edge_topology.h"
|
|
#include "../../per_face_normals.h"
|
|
|
|
#include <stdexcept>
|
|
#include "../../PI.h"
|
|
|
|
#include <Eigen/Geometry>
|
|
#include <Eigen/Sparse>
|
|
#include <queue>
|
|
#include <vector>
|
|
|
|
#include <gmm/gmm.h>
|
|
#include <CoMISo/Solver/ConstrainedSolver.hh>
|
|
#include <CoMISo/Solver/MISolver.hh>
|
|
#include <CoMISo/Solver/GMM_Tools.hh>
|
|
|
|
namespace igl
|
|
{
|
|
namespace copyleft
|
|
{
|
|
|
|
namespace comiso
|
|
{
|
|
class NRosyField
|
|
{
|
|
public:
|
|
// Init
|
|
IGL_INLINE NRosyField(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F);
|
|
|
|
// Generate the N-rosy field
|
|
// N degree of the rosy field
|
|
// round separately: round the integer variables one at a time, slower but higher quality
|
|
IGL_INLINE void solve(int N = 4);
|
|
|
|
// Set a hard constraint on fid
|
|
// fid: face id
|
|
// v: direction to fix (in 3d)
|
|
IGL_INLINE void setConstraintHard(int fid, const Eigen::Vector3d& v);
|
|
|
|
// Set a soft constraint on fid
|
|
// fid: face id
|
|
// w: weight of the soft constraint, clipped between 0 and 1
|
|
// v: direction to fix (in 3d)
|
|
IGL_INLINE void setConstraintSoft(int fid, double w, const Eigen::Vector3d& v);
|
|
|
|
// Set the ratio between smoothness and soft constraints (0 -> smoothness only, 1 -> soft constr only)
|
|
IGL_INLINE void setSoftAlpha(double alpha);
|
|
|
|
// Reset constraints (at least one constraint must be present or solve will fail)
|
|
IGL_INLINE void resetConstraints();
|
|
|
|
// Return the current field
|
|
IGL_INLINE Eigen::MatrixXd getFieldPerFace();
|
|
|
|
// Compute singularity indexes
|
|
IGL_INLINE void findCones(int N);
|
|
|
|
// Return the singularities
|
|
IGL_INLINE Eigen::VectorXd getSingularityIndexPerVertex();
|
|
|
|
private:
|
|
// Compute angle differences between reference frames
|
|
IGL_INLINE void computek();
|
|
|
|
// Remove useless matchings
|
|
IGL_INLINE void reduceSpace();
|
|
|
|
// Prepare the system matrix
|
|
IGL_INLINE void prepareSystemMatrix(int N);
|
|
|
|
// Solve with roundings using CoMIso
|
|
IGL_INLINE void solveRoundings();
|
|
|
|
// Convert a vector in 3d to an angle wrt the local reference system
|
|
IGL_INLINE double convert3DtoLocal(unsigned fid, const Eigen::Vector3d& v);
|
|
|
|
// Convert an angle wrt the local reference system to a 3d vector
|
|
IGL_INLINE Eigen::Vector3d convertLocalto3D(unsigned fid, double a);
|
|
|
|
// Compute the per vertex angle defect
|
|
IGL_INLINE Eigen::VectorXd angleDefect();
|
|
|
|
// Temporary variable for the field
|
|
Eigen::VectorXd angles;
|
|
|
|
// Hard constraints
|
|
Eigen::VectorXd hard;
|
|
std::vector<bool> isHard;
|
|
|
|
// Soft constraints
|
|
Eigen::VectorXd soft;
|
|
Eigen::VectorXd wSoft;
|
|
double softAlpha;
|
|
|
|
// Face Topology
|
|
Eigen::MatrixXi TT, TTi;
|
|
|
|
// Edge Topology
|
|
Eigen::MatrixXi EV, FE, EF;
|
|
std::vector<bool> isBorderEdge;
|
|
|
|
// Per Edge information
|
|
// Angle between two reference frames
|
|
Eigen::VectorXd k;
|
|
|
|
// Jumps
|
|
Eigen::VectorXi p;
|
|
std::vector<bool> pFixed;
|
|
|
|
// Mesh
|
|
Eigen::MatrixXd V;
|
|
Eigen::MatrixXi F;
|
|
|
|
// Normals per face
|
|
Eigen::MatrixXd N;
|
|
|
|
// Singularity index
|
|
Eigen::VectorXd singularityIndex;
|
|
|
|
// Reference frame per triangle
|
|
std::vector<Eigen::MatrixXd> TPs;
|
|
|
|
// System stuff
|
|
Eigen::SparseMatrix<double> A;
|
|
Eigen::VectorXd b;
|
|
Eigen::VectorXi tag_t;
|
|
Eigen::VectorXi tag_p;
|
|
|
|
};
|
|
|
|
} // NAMESPACE COMISO
|
|
} // NAMESPACE COPYLEFT
|
|
} // NAMESPACE IGL
|
|
|
|
igl::copyleft::comiso::NRosyField::NRosyField(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F)
|
|
{
|
|
V = _V;
|
|
F = _F;
|
|
|
|
assert(V.rows() > 0);
|
|
assert(F.rows() > 0);
|
|
|
|
// Generate topological relations
|
|
igl::triangle_triangle_adjacency(F,TT,TTi);
|
|
igl::edge_topology(V,F, EV, FE, EF);
|
|
|
|
// Flag border edges
|
|
isBorderEdge.resize(EV.rows());
|
|
for(unsigned i=0; i<EV.rows(); ++i)
|
|
isBorderEdge[i] = (EF(i,0) == -1) || ((EF(i,1) == -1));
|
|
|
|
// Generate normals per face
|
|
igl::per_face_normals(V, F, N);
|
|
|
|
// Generate reference frames
|
|
for(unsigned fid=0; fid<F.rows(); ++fid)
|
|
{
|
|
// First edge
|
|
Eigen::Vector3d e1 = V.row(F(fid,1)) - V.row(F(fid,0));
|
|
e1.normalize();
|
|
Eigen::Vector3d e2 = N.row(fid);
|
|
e2 = e2.cross(e1);
|
|
e2.normalize();
|
|
|
|
Eigen::MatrixXd TP(2,3);
|
|
TP << e1.transpose(), e2.transpose();
|
|
TPs.push_back(TP);
|
|
}
|
|
|
|
// Alloc internal variables
|
|
angles = Eigen::VectorXd::Zero(F.rows());
|
|
p = Eigen::VectorXi::Zero(EV.rows());
|
|
pFixed.resize(EV.rows());
|
|
k = Eigen::VectorXd::Zero(EV.rows());
|
|
singularityIndex = Eigen::VectorXd::Zero(V.rows());
|
|
|
|
// Reset the constraints
|
|
resetConstraints();
|
|
|
|
// Compute k, differences between reference frames
|
|
computek();
|
|
softAlpha = 0.5;
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::setSoftAlpha(double alpha)
|
|
{
|
|
assert(alpha >= 0 && alpha < 1);
|
|
softAlpha = alpha;
|
|
}
|
|
|
|
|
|
void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
{
|
|
double Nd = N;
|
|
|
|
// Minimize the MIQ energy
|
|
// Energy on edge ij is
|
|
// (t_i - t_j + kij + pij*(2*pi/N))^2
|
|
// Partial derivatives:
|
|
// t_i: 2 ( t_i - t_j + kij + pij*(2*pi/N)) = 0
|
|
// t_j: 2 (-t_i + t_j - kij - pij*(2*pi/N)) = 0
|
|
// pij: 4pi/N ( t_i - t_j + kij + pij*(2*pi/N)) = 0
|
|
//
|
|
// t_i t_j pij kij
|
|
// t_i [ 2 -2 4pi/N 2 ]
|
|
// t_j [ -2 2 -4pi/N -2 ]
|
|
// pij [ 4pi/N -4pi/N 2*(2pi/N)^2 4pi/N ]
|
|
|
|
// Count and tag the variables
|
|
tag_t = Eigen::VectorXi::Constant(F.rows(),-1);
|
|
std::vector<int> id_t;
|
|
size_t count = 0;
|
|
for(unsigned i=0; i<F.rows(); ++i)
|
|
if (!isHard[i])
|
|
{
|
|
tag_t(i) = count++;
|
|
id_t.push_back(i);
|
|
}
|
|
|
|
size_t count_t = id_t.size();
|
|
|
|
tag_p = Eigen::VectorXi::Constant(EF.rows(),-1);
|
|
std::vector<int> id_p;
|
|
for(unsigned i=0; i<EF.rows(); ++i)
|
|
{
|
|
if (!pFixed[i])
|
|
{
|
|
// if it is not fixed then it is a variable
|
|
tag_p(i) = count++;
|
|
}
|
|
|
|
// if it is not a border edge,
|
|
if (!isBorderEdge[i])
|
|
{
|
|
// and it is not between two fixed faces
|
|
if (!(isHard[EF(i,0)] && isHard[EF(i,1)]))
|
|
{
|
|
// then it participates in the energy!
|
|
id_p.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t count_p = count - count_t;
|
|
// System sizes: A (count_t + count_p) x (count_t + count_p)
|
|
// b (count_t + count_p)
|
|
|
|
b.resize(count_t + count_p);
|
|
b.setZero();
|
|
|
|
std::vector<Eigen::Triplet<double> > T;
|
|
T.reserve(3 * 4 * count_p);
|
|
|
|
for(auto eid : id_p)
|
|
{
|
|
int i = EF(eid, 0);
|
|
int j = EF(eid, 1);
|
|
bool isFixed_i = isHard[i];
|
|
bool isFixed_j = isHard[j];
|
|
bool isFixed_p = pFixed[eid];
|
|
int row;
|
|
// (i)-th row: t_i [ 2 -2 4pi/N 2 ]
|
|
if (!isFixed_i)
|
|
{
|
|
row = tag_t[i];
|
|
T.emplace_back(row, tag_t[i], 2);
|
|
if (isFixed_j)
|
|
b(row) += 2 * hard[j];
|
|
else
|
|
T.emplace_back(row, tag_t[j], -2);
|
|
if (isFixed_p)
|
|
b(row) += -((4. * igl::PI) / Nd) * p[eid];
|
|
else
|
|
T.emplace_back(row, tag_p[eid], ((4. * igl::PI) / Nd));
|
|
b(row) += -2 * k[eid];
|
|
assert(hard[i] == hard[i]);
|
|
assert(hard[j] == hard[j]);
|
|
assert(p[eid] == p[eid]);
|
|
assert(k[eid] == k[eid]);
|
|
assert(b(row) == b(row));
|
|
}
|
|
// (j)+1 -th row: t_j [ -2 2 -4pi/N -2 ]
|
|
if (!isFixed_j)
|
|
{
|
|
row = tag_t[j];
|
|
T.emplace_back(row, tag_t[j], 2);
|
|
if (isFixed_i)
|
|
b(row) += 2 * hard[i];
|
|
else
|
|
T.emplace_back(row, tag_t[i], -2);
|
|
if (isFixed_p)
|
|
b(row) += ((4. * igl::PI) / Nd) * p[eid];
|
|
else
|
|
T.emplace_back(row, tag_p[eid], -((4. * igl::PI) / Nd));
|
|
b(row) += 2 * k[eid];
|
|
assert(k[eid] == k[eid]);
|
|
assert(b(row) == b(row));
|
|
}
|
|
// (r*3)+2 -th row: pij [ 4pi/N -4pi/N 2*(2pi/N)^2 4pi/N ]
|
|
if (!isFixed_p)
|
|
{
|
|
row = tag_p[eid];
|
|
T.emplace_back(row, tag_p[eid], (2. * pow(((2. * igl::PI) / Nd), 2)));
|
|
if (isFixed_i)
|
|
b(row) += -(4. * igl::PI) / Nd * hard[i];
|
|
else
|
|
T.emplace_back(row, tag_t[i], (4. * igl::PI) / Nd);
|
|
if (isFixed_j)
|
|
b(row) += (4. * igl::PI) / Nd * hard[j];
|
|
else
|
|
T.emplace_back(row,tag_t[j], -(4. * igl::PI) / Nd);
|
|
b(row) += - (4 * igl::PI)/Nd * k[eid];
|
|
assert(k[eid] == k[eid]);
|
|
assert(b(row) == b(row));
|
|
}
|
|
}
|
|
|
|
A.resize(count_t + count_p, count_t + count_p);
|
|
A.setFromTriplets(T.begin(), T.end());
|
|
|
|
// Soft constraints
|
|
bool addSoft = false;
|
|
|
|
for(unsigned i=0; i<wSoft.size();++i)
|
|
if (wSoft[i] != 0)
|
|
addSoft = true;
|
|
|
|
if (addSoft)
|
|
{
|
|
Eigen::VectorXd bSoft = Eigen::VectorXd::Zero(count_t + count_p);
|
|
std::vector<Eigen::Triplet<double> > TSoft;
|
|
TSoft.reserve(2 * count_p);
|
|
|
|
for(unsigned i=0; i<F.rows(); ++i)
|
|
{
|
|
int varid = tag_t[i];
|
|
if (varid != -1) // if it is a variable in the system
|
|
{
|
|
TSoft.emplace_back(varid, varid, wSoft[i]);
|
|
bSoft[varid] += wSoft[i] * soft[i];
|
|
}
|
|
}
|
|
Eigen::SparseMatrix<double> ASoft(count_t + count_p, count_t + count_p);
|
|
ASoft.setFromTriplets(TSoft.begin(), TSoft.end());
|
|
|
|
A = (1.0 - softAlpha) * A + softAlpha * ASoft;
|
|
b = b * (1.0 - softAlpha) + bSoft * softAlpha;
|
|
}
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::solveRoundings()
|
|
{
|
|
unsigned n = A.rows();
|
|
|
|
gmm::col_matrix< gmm::wsvector< double > > gmm_A(n, n);
|
|
std::vector<double> gmm_b(n);
|
|
std::vector<int> ids_to_round;
|
|
std::vector<double> x(n);
|
|
|
|
// Copy A
|
|
for (int k=0; k<A.outerSize(); ++k)
|
|
for (Eigen::SparseMatrix<double>::InnerIterator it(A, k); it; ++it)
|
|
{
|
|
gmm_A(it.row(),it.col()) += it.value();
|
|
}
|
|
|
|
// Copy b
|
|
for(unsigned int i = 0; i < n;++i)
|
|
gmm_b[i] = b[i];
|
|
|
|
// Set variables to round
|
|
ids_to_round.clear();
|
|
for(unsigned i=0; i<tag_p.size();++i)
|
|
if(tag_p[i] != -1)
|
|
ids_to_round.push_back(tag_p[i]);
|
|
|
|
// Empty constraints
|
|
gmm::row_matrix< gmm::wsvector< double > > gmm_C(0, n);
|
|
|
|
COMISO::ConstrainedSolver cs;
|
|
cs.solve(gmm_C, gmm_A, x, gmm_b, ids_to_round, 0.0, false);
|
|
|
|
|
|
// Copy the result back
|
|
for(unsigned i=0; i<F.rows(); ++i)
|
|
if (tag_t[i] != -1)
|
|
angles[i] = x[tag_t[i]];
|
|
else
|
|
angles[i] = hard[i];
|
|
|
|
for(unsigned i=0; i<EF.rows(); ++i)
|
|
if(tag_p[i] != -1)
|
|
p[i] = (int)std::round(x[tag_p[i]]);
|
|
}
|
|
|
|
|
|
void igl::copyleft::comiso::NRosyField::solve(const int N)
|
|
{
|
|
// Reduce the search space by fixing matchings
|
|
reduceSpace();
|
|
|
|
// Build the system
|
|
prepareSystemMatrix(N);
|
|
|
|
// Solve with integer roundings
|
|
solveRoundings();
|
|
|
|
// Find the cones
|
|
findCones(N);
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::setConstraintHard(const int fid, const Eigen::Vector3d& v)
|
|
{
|
|
isHard[fid] = true;
|
|
hard(fid) = convert3DtoLocal(fid, v);
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::setConstraintSoft(const int fid, const double w, const Eigen::Vector3d& v)
|
|
{
|
|
wSoft(fid) = w;
|
|
soft(fid) = convert3DtoLocal(fid, v);
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::resetConstraints()
|
|
{
|
|
isHard.resize(F.rows());
|
|
for(unsigned i = 0; i < F.rows(); ++i)
|
|
isHard[i] = false;
|
|
hard = Eigen::VectorXd::Zero(F.rows());
|
|
wSoft = Eigen::VectorXd::Zero(F.rows());
|
|
soft = Eigen::VectorXd::Zero(F.rows());
|
|
}
|
|
|
|
Eigen::MatrixXd igl::copyleft::comiso::NRosyField::getFieldPerFace()
|
|
{
|
|
Eigen::MatrixXd result(F.rows(),3);
|
|
for(unsigned int i = 0; i < F.rows(); ++i)
|
|
result.row(i) = convertLocalto3D(i, angles(i));
|
|
return result;
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::computek()
|
|
{
|
|
// For every non-border edge
|
|
for (unsigned eid = 0; eid < EF.rows(); ++eid)
|
|
{
|
|
if (!isBorderEdge[eid])
|
|
{
|
|
int fid0 = EF(eid,0);
|
|
int fid1 = EF(eid,1);
|
|
|
|
Eigen::Vector3d N0 = N.row(fid0);
|
|
Eigen::Vector3d N1 = N.row(fid1);
|
|
|
|
// find common edge on triangle 0 and 1
|
|
int fid0_vc = -1;
|
|
int fid1_vc = -1;
|
|
for (unsigned i=0;i<3;++i)
|
|
{
|
|
if (EV(eid,0) == F(fid0,i))
|
|
fid0_vc = i;
|
|
if (EV(eid,1) == F(fid1,i))
|
|
fid1_vc = i;
|
|
}
|
|
assert(fid0_vc != -1);
|
|
assert(fid1_vc != -1);
|
|
|
|
Eigen::Vector3d common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
|
|
common_edge.normalize();
|
|
|
|
// Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
|
|
Eigen::MatrixXd P(3,3);
|
|
Eigen::VectorXd o = V.row(F(fid0,fid0_vc));
|
|
Eigen::VectorXd tmp = N0.cross(common_edge);
|
|
P << common_edge, tmp, N0;
|
|
P.transposeInPlace();
|
|
|
|
|
|
Eigen::MatrixXd V0(3,3);
|
|
V0.row(0) = V.row(F(fid0,0)).transpose() -o;
|
|
V0.row(1) = V.row(F(fid0,1)).transpose() -o;
|
|
V0.row(2) = V.row(F(fid0,2)).transpose() -o;
|
|
|
|
V0 = (P*V0.transpose()).transpose();
|
|
|
|
assert(V0(0,2) < 1e-10);
|
|
assert(V0(1,2) < 1e-10);
|
|
assert(V0(2,2) < 1e-10);
|
|
|
|
Eigen::MatrixXd V1(3,3);
|
|
V1.row(0) = V.row(F(fid1,0)).transpose() -o;
|
|
V1.row(1) = V.row(F(fid1,1)).transpose() -o;
|
|
V1.row(2) = V.row(F(fid1,2)).transpose() -o;
|
|
V1 = (P*V1.transpose()).transpose();
|
|
|
|
assert(V1(fid1_vc,2) < 1e-10);
|
|
assert(V1((fid1_vc+1)%3,2) < 1e-10);
|
|
|
|
// compute rotation R such that R * N1 = N0
|
|
// i.e. map both triangles to the same plane
|
|
double alpha = -std::atan2(-V1((fid1_vc + 2) % 3, 2), -V1((fid1_vc + 2) % 3, 1));
|
|
|
|
Eigen::MatrixXd R(3,3);
|
|
R << 1, 0, 0,
|
|
0, std::cos(alpha), -std::sin(alpha),
|
|
0, std::sin(alpha), std::cos(alpha);
|
|
V1 = (R*V1.transpose()).transpose();
|
|
|
|
assert(V1(0,2) < 1e-10);
|
|
assert(V1(1,2) < 1e-10);
|
|
assert(V1(2,2) < 1e-10);
|
|
|
|
// measure the angle between the reference frames
|
|
// k_ij is the angle between the triangle on the left and the one on the right
|
|
Eigen::VectorXd ref0 = V0.row(1) - V0.row(0);
|
|
Eigen::VectorXd ref1 = V1.row(1) - V1.row(0);
|
|
|
|
ref0.normalize();
|
|
ref1.normalize();
|
|
|
|
double ktemp = - std::atan2(ref1(1), ref1(0)) + std::atan2(ref0(1), ref0(0));
|
|
|
|
// make sure kappa is in corret range
|
|
auto pos_fmod = [](double x, double y){
|
|
return (0 == y) ? x : x - y * floor(x/y);
|
|
};
|
|
ktemp = pos_fmod(ktemp, 2*igl::PI);
|
|
if (ktemp > igl::PI)
|
|
ktemp -= 2*igl::PI;
|
|
|
|
// just to be sure, rotate ref0 using angle ktemp...
|
|
Eigen::MatrixXd R2(2,2);
|
|
R2 << std::cos(-ktemp), -std::sin(-ktemp), std::sin(-ktemp), std::cos(-ktemp);
|
|
|
|
tmp = R2*ref0.head<2>();
|
|
|
|
assert(tmp(0) - ref1(0) < 1e-10);
|
|
assert(tmp(1) - ref1(1) < 1e-10);
|
|
|
|
k[eid] = ktemp;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::reduceSpace()
|
|
{
|
|
// All variables are free in the beginning
|
|
for(unsigned int i = 0; i < EV.rows(); ++i)
|
|
pFixed[i] = false;
|
|
|
|
std::vector<bool> visited(EV.rows(), false);
|
|
std::vector<bool> starting(EV.rows(), false);
|
|
|
|
std::queue<int> q;
|
|
for(unsigned int i = 0; i < F.rows(); ++i)
|
|
if (isHard[i] || wSoft[i] != 0)
|
|
{
|
|
q.push(i);
|
|
starting[i] = true;
|
|
}
|
|
|
|
// Reduce the search space (see MI paper)
|
|
while (!q.empty())
|
|
{
|
|
int c = q.front();
|
|
q.pop();
|
|
|
|
visited[c] = true;
|
|
for(int i=0; i<3; ++i)
|
|
{
|
|
int eid = FE(c,i);
|
|
int fid = TT(c,i);
|
|
|
|
// skip borders
|
|
if (fid != -1)
|
|
{
|
|
assert((EF(eid,0) == c && EF(eid,1) == fid) || (EF(eid,1) == c && EF(eid,0) == fid));
|
|
// for every neighbouring face
|
|
if (!visited[fid] && !starting[fid])
|
|
{
|
|
pFixed[eid] = true;
|
|
p[eid] = 0;
|
|
visited[fid] = true;
|
|
q.push(fid);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// fix borders
|
|
pFixed[eid] = true;
|
|
p[eid] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Force matchings between fixed faces
|
|
for(unsigned int i = 0; i < F.rows();++i)
|
|
{
|
|
if (isHard[i])
|
|
{
|
|
for(unsigned int j = 0; j < 3; ++j)
|
|
{
|
|
int fid = TT(i,j);
|
|
if ((fid!=-1) && (isHard[fid]))
|
|
{
|
|
// i and fid are adjacent and fixed
|
|
int eid = FE(i,j);
|
|
int fid0 = EF(eid,0);
|
|
int fid1 = EF(eid,1);
|
|
|
|
pFixed[eid] = true;
|
|
p[eid] = (int)std::round(2.0 / igl::PI * (hard(fid1) - hard(fid0) - k(eid)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
double igl::copyleft::comiso::NRosyField::convert3DtoLocal(unsigned fid, const Eigen::Vector3d& v)
|
|
{
|
|
// Project onto the tangent plane
|
|
Eigen::Vector2d vp = TPs[fid] * v;
|
|
|
|
// Convert to angle
|
|
return std::atan2(vp(1), vp(0));
|
|
}
|
|
|
|
Eigen::Vector3d igl::copyleft::comiso::NRosyField::convertLocalto3D(unsigned fid, double a)
|
|
{
|
|
Eigen::Vector2d vp(std::cos(a), std::sin(a));
|
|
return vp.transpose() * TPs[fid];
|
|
}
|
|
|
|
Eigen::VectorXd igl::copyleft::comiso::NRosyField::angleDefect()
|
|
{
|
|
Eigen::VectorXd A = Eigen::VectorXd::Constant(V.rows(), 2*igl::PI);
|
|
|
|
for (unsigned int i = 0; i < F.rows(); ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
Eigen::VectorXd a = V.row(F(i,(j+1)%3)) - V.row(F(i,j));
|
|
Eigen::VectorXd b = V.row(F(i,(j+2)%3)) - V.row(F(i,j));
|
|
double t = a.transpose() * b;
|
|
if(a.norm() > 0. && b.norm() > 0.)
|
|
t /= (a.norm() * b.norm());
|
|
else
|
|
throw std::runtime_error("igl::copyleft::comiso::NRosyField::angleDefect: Division by zero!");
|
|
A(F(i, j)) -= std::acos(std::max(std::min(t, 1.), -1.));
|
|
}
|
|
}
|
|
|
|
return A;
|
|
}
|
|
|
|
void igl::copyleft::comiso::NRosyField::findCones(int N)
|
|
{
|
|
// Compute I0, see http://www.graphics.rwth-aachen.de/media/papers/bommes_zimmer_2009_siggraph_011.pdf for details
|
|
|
|
singularityIndex = Eigen::VectorXd::Zero(V.rows());
|
|
|
|
// first the k
|
|
for (unsigned i = 0; i < EV.rows(); ++i)
|
|
{
|
|
if (!isBorderEdge[i])
|
|
{
|
|
singularityIndex(EV(i, 0)) += k(i);
|
|
singularityIndex(EV(i, 1)) -= k(i);
|
|
}
|
|
}
|
|
|
|
// then the A
|
|
Eigen::VectorXd A = angleDefect();
|
|
singularityIndex += A;
|
|
// normalize
|
|
singularityIndex /= (2 * igl::PI);
|
|
|
|
// round to integer (remove numerical noise)
|
|
for (unsigned i = 0; i < singularityIndex.size(); ++i)
|
|
singularityIndex(i) = round(singularityIndex(i));
|
|
|
|
for (unsigned i = 0; i < EV.rows(); ++i)
|
|
{
|
|
if (!isBorderEdge[i])
|
|
{
|
|
singularityIndex(EV(i, 0)) += double(p(i)) / double(N);
|
|
singularityIndex(EV(i, 1)) -= double(p(i)) / double(N);
|
|
}
|
|
}
|
|
|
|
// Clear the vertices on the edges
|
|
for (unsigned i = 0; i < EV.rows(); ++i)
|
|
{
|
|
if (isBorderEdge[i])
|
|
{
|
|
singularityIndex(EV(i,0)) = 0;
|
|
singularityIndex(EV(i,1)) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
Eigen::VectorXd igl::copyleft::comiso::NRosyField::getSingularityIndexPerVertex()
|
|
{
|
|
return singularityIndex;
|
|
}
|
|
|
|
IGL_INLINE void igl::copyleft::comiso::nrosy(
|
|
const Eigen::MatrixXd& V,
|
|
const Eigen::MatrixXi& F,
|
|
const Eigen::VectorXi& b,
|
|
const Eigen::MatrixXd& bc,
|
|
const Eigen::VectorXi& b_soft,
|
|
const Eigen::VectorXd& w_soft,
|
|
const Eigen::MatrixXd& bc_soft,
|
|
const int N,
|
|
const double soft,
|
|
Eigen::MatrixXd& R,
|
|
Eigen::VectorXd& S
|
|
)
|
|
{
|
|
// Init solver
|
|
igl::copyleft::comiso::NRosyField solver(V, F);
|
|
|
|
// Add hard constraints
|
|
for (unsigned i = 0; i < b.size(); ++i)
|
|
solver.setConstraintHard(b(i), bc.row(i));
|
|
|
|
// Add soft constraints
|
|
for (unsigned i = 0; i < b_soft.size(); ++i)
|
|
solver.setConstraintSoft(b_soft(i), w_soft(i), bc_soft.row(i));
|
|
|
|
// Set the soft constraints global weight
|
|
solver.setSoftAlpha(soft);
|
|
|
|
// Interpolate
|
|
solver.solve(N);
|
|
|
|
// Copy the result back
|
|
R = solver.getFieldPerFace();
|
|
|
|
// Extract singularity indices
|
|
S = solver.getSingularityIndexPerVertex();
|
|
}
|
|
|
|
|
|
IGL_INLINE void igl::copyleft::comiso::nrosy(
|
|
const Eigen::MatrixXd& V,
|
|
const Eigen::MatrixXi& F,
|
|
const Eigen::VectorXi& b,
|
|
const Eigen::MatrixXd& bc,
|
|
const int N,
|
|
Eigen::MatrixXd& R,
|
|
Eigen::VectorXd& S
|
|
)
|
|
{
|
|
// Init solver
|
|
igl::copyleft::comiso::NRosyField solver(V, F);
|
|
|
|
// Add hard constraints
|
|
for (unsigned i= 0; i < b.size(); ++i)
|
|
solver.setConstraintHard(b(i), bc.row(i));
|
|
|
|
// Interpolate
|
|
solver.solve(N);
|
|
|
|
// Copy the result back
|
|
R = solver.getFieldPerFace();
|
|
|
|
// Extract singularity indices
|
|
S = solver.getSingularityIndexPerVertex();
|
|
}
|
|
|