You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.7 KiB
82 lines
2.7 KiB
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2017 Daniele Panozzo <daniele.panozzo@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#ifndef IGL_ATA_CACHED_H
|
|
#define IGL_ATA_CACHED_H
|
|
#include "igl_inline.h"
|
|
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
|
|
#include <Eigen/Dense>
|
|
#include <Eigen/Sparse>
|
|
namespace igl
|
|
{
|
|
/// Hold precomputed data for AtA_cached
|
|
struct AtA_cached_data
|
|
{
|
|
/// Weights (diagonal of W)
|
|
Eigen::VectorXd W;
|
|
|
|
// Flatten composition rules
|
|
/// @private
|
|
std::vector<int> I_row;
|
|
/// @private
|
|
std::vector<int> I_col;
|
|
/// @private
|
|
std::vector<int> I_w;
|
|
|
|
// For each entry of AtA, points to the beginning
|
|
// of the composition rules
|
|
/// @private
|
|
std::vector<int> I_outer;
|
|
};
|
|
|
|
/// Computes At * W * A, where A is sparse and W is diagonal.
|
|
///
|
|
/// Divides the construction in two phases, one for fixing the sparsity
|
|
/// pattern, and one to populate it with values. Compared to evaluating it
|
|
/// directly, this version is slower for the first time (since it requires a
|
|
/// precomputation), but faster to the subsequent evaluations.
|
|
///
|
|
/// @param[in] A m x n sparse matrix
|
|
/// @param[in,out] data stores the precomputed sparsity pattern, data.W contains the optional diagonal weights (stored as a dense vector). If W is not provided, it is replaced by the identity.
|
|
/// @param[out] AtA m by m matrix computed as AtA * W * A
|
|
///
|
|
/// #### Example:
|
|
///
|
|
/// \code{cpp}
|
|
/// AtA_data = igl::AtA_cached_data();
|
|
/// AtA_data.W = W;
|
|
/// if (s.AtA.rows() == 0)
|
|
/// igl::AtA_cached_precompute(s.A,s.AtA_data,s.AtA);
|
|
/// else
|
|
/// igl::AtA_cached(s.A,s.AtA_data,s.AtA);
|
|
/// \endcode
|
|
template <typename Scalar>
|
|
IGL_INLINE void AtA_cached_precompute(
|
|
const Eigen::SparseMatrix<Scalar>& A,
|
|
AtA_cached_data& data,
|
|
Eigen::SparseMatrix<Scalar>& AtA
|
|
);
|
|
|
|
/// Computes At * W * A, where A is sparse and W is diagonal precomputed into data.
|
|
///
|
|
/// @param[in] A m x n sparse matrix
|
|
/// @param[in] data stores the precomputed sparsity pattern, data.W contains the optional diagonal weights (stored as a dense vector). If W is not provided, it is replaced by the identity.
|
|
/// @param[out] AtA m by m matrix computed as AtA * W * A
|
|
template <typename Scalar>
|
|
IGL_INLINE void AtA_cached(
|
|
const Eigen::SparseMatrix<Scalar>& A,
|
|
const AtA_cached_data& data,
|
|
Eigen::SparseMatrix<Scalar>& AtA
|
|
);
|
|
|
|
}
|
|
|
|
#ifndef IGL_STATIC_LIBRARY
|
|
# include "AtA_cached.cpp"
|
|
#endif
|
|
|
|
#endif
|
|
|