You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
447 lines
21 KiB
447 lines
21 KiB
//
|
|
// Created by cflin on 6/9/23.
|
|
//
|
|
#include <memory>
|
|
#include <nlohmann/json.hpp>
|
|
#include "Boundary.h"
|
|
#include "Mesh/HeatMesh.h"
|
|
#include "Util.h"
|
|
#include "ThermoelasticTop3d.h"
|
|
#include "FEA/MechanicalLinearFEA.h"
|
|
#include "FEA/ThermalLinearFEA.h"
|
|
#include "TensorWrapper.h"
|
|
|
|
int main() {
|
|
using namespace da::sha;
|
|
using namespace da::sha::top;
|
|
using top::fs_path;
|
|
using std::string;
|
|
top::fs_path output_dir(OUTPUT_DIR);
|
|
top::fs_path config_file(
|
|
CMAKE_SOURCE_DIR "/examples/top-thermoelastic-compare-3d/config_Lshape.json");
|
|
top::fs_path assets_dir(ASSETS_DIR);
|
|
spdlog::info("Algo read from '{}'", config_file.string());
|
|
spdlog::info("Algo output to '{}'", output_dir.string());
|
|
spdlog::info("assets dir: '{}'", assets_dir.string());
|
|
|
|
// read json
|
|
std::ifstream f(config_file.c_str());
|
|
if (!f) {
|
|
spdlog::critical("f open fail!");
|
|
exit(-7);
|
|
}
|
|
nlohmann::json j_config = nlohmann::json::parse(f);
|
|
// read title
|
|
std::string ex_name = j_config["TopologyOptimizationExample"];
|
|
spdlog::critical("TopologyOptimizationExample: {}", ex_name);
|
|
|
|
// set topology parameters
|
|
auto para = std::make_shared<top::CtrlPara>();
|
|
para->max_loop = j_config["topology"]["max_loop"];
|
|
para->volfrac = j_config["topology"]["volfrac"];
|
|
para->r_min = j_config["topology"]["r_min"];
|
|
para->penal = j_config["topology"]["penal"];
|
|
para->T_ref = j_config["topology"]["T_ref"];
|
|
para->T_limit = j_config["topology"]["T_limit"];
|
|
para->R_E = j_config["topology"]["R_E"];
|
|
para->R_lambda = j_config["topology"]["R_lambda"];
|
|
para->R_beta = j_config["topology"]["R_beta"];
|
|
|
|
// set material parameters
|
|
double E = j_config["material"]["E"];
|
|
double Poisson_ratio = j_config["material"]["poisson_ratio"];
|
|
double thermal_conductivity = j_config["material"]["thermal_conductivity"];
|
|
double thermal_expansion_coefficient = j_config["material"]["thermal_expansion_coefficient"];
|
|
auto material = std::make_shared<top::Material>(E, Poisson_ratio,
|
|
thermal_conductivity,
|
|
thermal_expansion_coefficient);
|
|
// set fea
|
|
auto sp_mech_fea = std::make_shared<top::MechanicalLinearFEA>(
|
|
material);// for mechanical
|
|
auto sp_thermal_fea = std::make_shared<top::ThermalLinearFEA>(
|
|
material);// for thermal
|
|
|
|
// set mesh(regular)
|
|
int len_x = j_config["model"]["regular_model"]["lx"];
|
|
int len_y = j_config["model"]["regular_model"]["ly"];
|
|
int len_z = j_config["model"]["regular_model"]["lz"];
|
|
// NOTE: USER DEFINE GRID HERE!!!
|
|
std::shared_ptr<top::Mesh> sp_mech_mesh;
|
|
std::shared_ptr<top::HeatMesh> sp_thermal_mesh;
|
|
if (ex_name == "Lshape") {
|
|
// L-shape condition
|
|
spdlog::critical("Using User Defined density!");
|
|
top::Tensor3d L_shape_model(len_x, len_y, len_z);
|
|
L_shape_model.setConstant(1);
|
|
// set the initial voxel model
|
|
for (int k = 0; k < len_z; ++k) {
|
|
for (int j = 0; j < len_y; ++j) {
|
|
for (int i = 0; i < len_x; ++i) {
|
|
if (j > len_y * 0.6 & k > len_z * 0.5) {
|
|
L_shape_model(i, j, k) = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
auto &model = L_shape_model;
|
|
sp_mech_mesh = std::make_shared<top::Mesh>(len_x, len_y, len_z, model);
|
|
sp_thermal_mesh = std::make_shared<top::HeatMesh>(len_x, len_y, len_z,
|
|
model);
|
|
} else {
|
|
sp_mech_mesh = std::make_shared<top::Mesh>(len_x, len_y, len_z);
|
|
sp_thermal_mesh = std::make_shared<top::HeatMesh>(len_x, len_y, len_z);
|
|
}
|
|
// initialize Top3d
|
|
auto sp_mech_top3d = std::make_shared<top::Top3d>(para, sp_mech_fea,
|
|
sp_mech_mesh);
|
|
auto sp_ther_top3d = std::make_shared<top::Top3d>(para, sp_thermal_fea,
|
|
sp_thermal_mesh);
|
|
|
|
// auxiliary class(Boundary) help to get boundary coordinates
|
|
// see the comments in Boundary.h for more information
|
|
auto AddBoundaryMechanicalCondition = [&j_config](
|
|
std::shared_ptr<top::Top3d> sp_mech_top3d,
|
|
std::shared_ptr<top::Mesh> sp_mech_mesh) {
|
|
top::Boundary mech_bdr(sp_mech_mesh);
|
|
|
|
{
|
|
// add Dirichlet boundary, see the comments in Top3d::AddDBC for more information
|
|
assert(j_config.count("mechanical_boundary_condition"));
|
|
assert(j_config["mechanical_boundary_condition"].count("DBC"));
|
|
assert(j_config["mechanical_boundary_condition"].count("NBC"));
|
|
int DBCNum = j_config["mechanical_boundary_condition"]["DBC"].size();
|
|
for (int _i = 0; _i < DBCNum; ++_i) {
|
|
const auto &DBCI = j_config["mechanical_boundary_condition"]["DBC"][_i];
|
|
Eigen::Vector3d minBBox(DBCI["min"][0], DBCI["min"][1],
|
|
DBCI["min"][2]);
|
|
Eigen::Vector3d maxBBox(DBCI["max"][0], DBCI["max"][1],
|
|
DBCI["max"][2]);
|
|
Eigen::Vector3i dir(DBCI["dir"][0], DBCI["dir"][1],
|
|
DBCI["dir"][2]);
|
|
top::Dir t_dir(minBBox, maxBBox, dir);
|
|
|
|
sp_mech_top3d->AddDBC(
|
|
mech_bdr.GetChosenCoordsByRelativeAlignedBox(t_dir.box),
|
|
t_dir.dir);
|
|
}
|
|
|
|
// add Neumann boundary, see the comments in Top3d::AddNBC for more information
|
|
int NBCNum = j_config["mechanical_boundary_condition"]["NBC"].size();
|
|
for (int _i = 0; _i < NBCNum; ++_i) {
|
|
const auto &NBCI = j_config["mechanical_boundary_condition"]["NBC"][_i];
|
|
Eigen::Vector3d minBBox(NBCI["min"][0], NBCI["min"][1],
|
|
NBCI["min"][2]);
|
|
Eigen::Vector3d maxBBox(NBCI["max"][0], NBCI["max"][1],
|
|
NBCI["max"][2]);
|
|
Eigen::Vector3d val(NBCI["val"][0], NBCI["val"][1],
|
|
NBCI["val"][2]);
|
|
top::Neu t_neu(minBBox, maxBBox, val);
|
|
|
|
Eigen::MatrixXi coords = mech_bdr.GetChosenCoordsByRelativeAlignedBox(
|
|
t_neu.box);
|
|
sp_mech_top3d->AddNBC(coords, t_neu.val / coords.rows());
|
|
}
|
|
}
|
|
|
|
};
|
|
auto AddBoundaryThermalCondition = [&j_config](
|
|
std::shared_ptr<top::Top3d> sp_ther_top3d,
|
|
std::shared_ptr<top::HeatMesh> sp_ther_mesh) {
|
|
top::Boundary thermal_bdr(sp_ther_mesh);
|
|
{
|
|
// add Dirichlet boundary, see the comments in Top3d::AddDBC for more information
|
|
assert(j_config.count("thermal_boundary_condition"));
|
|
assert(j_config["thermal_boundary_condition"].count("DBC"));
|
|
assert(j_config["thermal_boundary_condition"].count("NBC"));
|
|
int DBCNum = j_config["thermal_boundary_condition"]["DBC"].size();
|
|
for (int _i = 0; _i < DBCNum; ++_i) {
|
|
const auto &DBCI = j_config["thermal_boundary_condition"]["DBC"][_i];
|
|
Eigen::Vector3d minBBox(DBCI["min"][0], DBCI["min"][1],
|
|
DBCI["min"][2]);
|
|
Eigen::Vector3d maxBBox(DBCI["max"][0], DBCI["max"][1],
|
|
DBCI["max"][2]);
|
|
top::Dir t_dir(minBBox, maxBBox, Eigen::Vector3i(1, 0, 0));
|
|
|
|
sp_ther_top3d->AddDBC(
|
|
thermal_bdr.GetChosenCoordsByRelativeAlignedBox(
|
|
t_dir.box),
|
|
t_dir.dir, DBCI["temperature"]);
|
|
}
|
|
|
|
// add Neumann boundary, see the comments in Top3d::AddNBC for more information
|
|
int NBCNum = j_config["thermal_boundary_condition"]["NBC"].size();
|
|
for (int _i = 0; _i < NBCNum; ++_i) {
|
|
const auto &NBCI = j_config["thermal_boundary_condition"]["NBC"][_i];
|
|
Eigen::Vector3d minBBox(NBCI["min"][0], NBCI["min"][1],
|
|
NBCI["min"][2]);
|
|
Eigen::Vector3d maxBBox(NBCI["max"][0], NBCI["max"][1],
|
|
NBCI["max"][2]);
|
|
Eigen::Vector3d val(NBCI["heat_flux"], 0, 0);
|
|
top::Neu t_neu(minBBox, maxBBox, val);
|
|
|
|
Eigen::MatrixXi coords = thermal_bdr.GetChosenCoordsByRelativeAlignedBox(
|
|
t_neu.box);
|
|
sp_ther_top3d->AddNBC(coords, t_neu.val / coords.rows());
|
|
}
|
|
}
|
|
};
|
|
|
|
AddBoundaryMechanicalCondition(sp_mech_top3d, sp_mech_mesh);
|
|
AddBoundaryThermalCondition(sp_ther_top3d, sp_thermal_mesh);
|
|
|
|
// process topology optimization
|
|
spdlog::critical("start to mechanical top opt ...");
|
|
top::Tensor3d t_me_rho = sp_mech_top3d->TopOptMainLoop();
|
|
{
|
|
spdlog::critical("extract compliance and volume each iteration ...");
|
|
// extract compliance and volume each iteration
|
|
fs_path compliance_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + "_MeTop" + "_compliance.txt");
|
|
WriteStdVector(compliance_path, sp_mech_top3d->v_compliance_);
|
|
spdlog::info("write compliance txt to: {}", compliance_path.c_str());
|
|
|
|
fs_path volume_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + "_MeTop" + "_volume.txt");
|
|
WriteStdVector(volume_path, sp_mech_top3d->v_volume_);
|
|
spdlog::info("write volume txt to: {}", volume_path.c_str());
|
|
|
|
// extract rho (txt and vtk)
|
|
fs_path rho_txt_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + "_MeTop" + "_rho.txt");
|
|
write_tensor3d(rho_txt_path, t_me_rho, sp_mech_mesh->GetOrigin(),
|
|
sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
|
|
spdlog::info("write density txt to: {}", rho_txt_path.c_str());
|
|
|
|
fs_path rho_vtk_path =
|
|
output_dir / "vtk" / ex_name /
|
|
(ex_name + "_MeTop" + "_rho.vtk");
|
|
WriteTensorToVtk(rho_vtk_path, t_me_rho, sp_mech_mesh);
|
|
spdlog::info("write density vtk to: {}", rho_vtk_path.c_str());
|
|
}
|
|
|
|
spdlog::critical("start to mechanical thermal top opt ...");
|
|
// init thermoelastic top3d
|
|
top::ThermoelasticTop3d mech_ther_top3d(sp_mech_top3d, sp_ther_top3d);
|
|
top::Tensor3d t_meth_rho = mech_ther_top3d.TopOptMainLoop();
|
|
{
|
|
spdlog::critical("extract compliance and volume each iteration ...");
|
|
// extract compliance and volume each iteration
|
|
fs_path compliance_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + "_MeThTop" + "_compliance.txt");
|
|
WriteStdVector(compliance_path, mech_ther_top3d.v_compliance_);
|
|
spdlog::info("write compliance txt to: {}", compliance_path.c_str());
|
|
|
|
fs_path volume_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + "_MeThTop" + "_volume.txt");
|
|
WriteStdVector(volume_path, mech_ther_top3d.v_volume_);
|
|
spdlog::info("write volume txt to: {}", volume_path.c_str());
|
|
|
|
// extract rho (txt and vtk)
|
|
fs_path rho_txt_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + "_MeThTop" + "_rho.txt");
|
|
write_tensor3d(rho_txt_path, t_meth_rho, sp_mech_mesh->GetOrigin(),
|
|
sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
|
|
spdlog::info("write density txt to: {}", rho_txt_path.c_str());
|
|
|
|
fs_path rho_vtk_path =
|
|
output_dir / "vtk" / ex_name /
|
|
(ex_name + "_MeThTop" + "_rho.vtk");
|
|
WriteTensorToVtk(rho_vtk_path, t_meth_rho, sp_mech_mesh);
|
|
spdlog::info("write density vtk to: {}", rho_vtk_path.c_str());
|
|
}
|
|
|
|
// // extract rho (txt and vtk)
|
|
// fs_path rho_txt_path = output_dir / "txt" / (ex_name + "_rho.txt");
|
|
// write_tensor3d(rho_txt_path, ten_rho, sp_mech_mesh->GetOrigin(),
|
|
// sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
|
|
// spdlog::info("write density txt to: {}", rho_txt_path.c_str());
|
|
//
|
|
// fs_path rho_vtk_path = output_dir / "vtk" / (ex_name + "_rho.vtk");
|
|
// WriteTensorToVtk(rho_vtk_path, ten_rho, sp_mech_mesh);
|
|
// spdlog::info("write density vtk to: {}", rho_vtk_path.c_str());
|
|
|
|
// // extract temperature(vtk)
|
|
// fs_path T_vtk_path = output_dir / "vtk" / (ex_name + "_T.vtk");
|
|
// WriteUToVtk(T_vtk_path, ther_top3d.GetTemperature(), sp_thermal_mesh);
|
|
// spdlog::info("write temperature vtk to: {}", T_vtk_path.c_str());
|
|
//
|
|
// // extract displacement(vtk)
|
|
// fs_path U_vtk_path = output_dir / "vtk" / (ex_name + "_U.vtk");
|
|
// WriteUToVtk(U_vtk_path, ther_top3d.GetNormedDisplacement(), sp_mech_mesh);
|
|
// spdlog::info("write displacement norm vtk to: {}", U_vtk_path.c_str());
|
|
//
|
|
// // extract stress field(txt or vtk)
|
|
// auto t_von_stress = ther_top3d.GetVonStress();
|
|
// fs_path von_stress_txt_path =
|
|
// output_dir / "txt" / (ex_name + "_von_stress.txt");
|
|
// write_tensor3d(von_stress_txt_path, t_von_stress, sp_mech_mesh->GetOrigin(),
|
|
// sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
|
|
// spdlog::info("write von stress txt to: {}", von_stress_txt_path.c_str());
|
|
//
|
|
// fs_path von_stress_vtk_path =
|
|
// output_dir / "vtk" / (ex_name + "_von_stress.vtk");
|
|
// WriteTensorToVtk(von_stress_vtk_path, t_von_stress, sp_mech_mesh);
|
|
// spdlog::info("write von stress vtk to: {}", von_stress_vtk_path.c_str());
|
|
|
|
|
|
// postprocess--------------------------------------------------------------
|
|
auto MechanicalSimulation = [&](const top::Tensor3d &t_rho,
|
|
const string &suffix) {
|
|
sp_mech_mesh = std::make_shared<top::Mesh>(t_rho.dimension(0),
|
|
t_rho.dimension(1),
|
|
t_rho.dimension(2), t_rho);
|
|
// postprocess: simulation
|
|
// MeSim
|
|
{
|
|
auto sp_mech_top3d_sim = std::make_shared<top::Top3d>(para,
|
|
sp_mech_fea,
|
|
sp_mech_mesh);
|
|
sp_mech_top3d_sim->TopOptMainLoop(true);
|
|
|
|
// extract displacement(vtk)
|
|
fs_path U_vtk_path = output_dir / "vtk" /
|
|
(ex_name + "_MeSim" + "_U" + suffix +
|
|
".vtk");
|
|
WriteUToVtk(U_vtk_path, sp_mech_top3d_sim->GetNormedDisplacement(),
|
|
sp_mech_mesh);
|
|
spdlog::info("write displacement norm vtk to: {}",
|
|
U_vtk_path.c_str());
|
|
|
|
// extract stress field(txt and vtk)
|
|
auto t_von_stress = sp_mech_top3d_sim->GetVonStress();
|
|
fs_path von_stress_vtk_path =
|
|
output_dir / "vtk" /
|
|
(ex_name + "_MeSim" + "_von_stress" + suffix + ".vtk");
|
|
WriteNodeToVtk(von_stress_vtk_path, t_von_stress, sp_mech_mesh);
|
|
spdlog::info("write von stress vtk to: {}",
|
|
von_stress_vtk_path.c_str());
|
|
|
|
// extract compliance
|
|
fs_path compliance_path =
|
|
output_dir / "txt" /
|
|
(ex_name + "_MeSim" + "_compliance" + suffix + ".txt");
|
|
WriteStdVector(compliance_path, mech_ther_top3d.v_compliance_);
|
|
spdlog::info("write compliance txt to: {}",
|
|
compliance_path.c_str());
|
|
|
|
}
|
|
};
|
|
auto MechanicalThermalSimulation = [&output_dir, &ex_name, ¶, &sp_mech_fea, &sp_thermal_fea, &AddBoundaryThermalCondition, &AddBoundaryMechanicalCondition](
|
|
const top::Tensor3d &t_rho,
|
|
const string &suffix) {
|
|
auto sp_mech_mesh_sim = std::make_shared<top::Mesh>(t_rho.dimension(0),
|
|
t_rho.dimension(1),
|
|
t_rho.dimension(2),
|
|
t_rho);
|
|
auto sp_thermal_mesh_sim = std::make_shared<top::HeatMesh>(
|
|
t_rho.dimension(0),
|
|
t_rho.dimension(1),
|
|
t_rho.dimension(2),
|
|
t_rho);
|
|
auto sp_mech_top3d_sim = std::make_shared<top::Top3d>(para, sp_mech_fea,
|
|
sp_mech_mesh_sim);
|
|
auto sp_thermal_top3d_sim = std::make_shared<top::Top3d>(para,
|
|
sp_thermal_fea,
|
|
sp_thermal_mesh_sim);
|
|
AddBoundaryMechanicalCondition(sp_mech_top3d_sim, sp_mech_mesh_sim);
|
|
AddBoundaryThermalCondition(sp_thermal_top3d_sim, sp_thermal_mesh_sim);
|
|
top::ThermoelasticTop3d ther_top3d_sim(sp_mech_top3d_sim,
|
|
sp_thermal_top3d_sim);
|
|
ther_top3d_sim.TopOptMainLoop(true);
|
|
{
|
|
// extract clamped rho (vtk)
|
|
fs_path rho_vtk_path = output_dir / "vtk" / ex_name /
|
|
(ex_name + suffix + "_rho" +
|
|
".vtk");
|
|
auto t_temp = t_rho;
|
|
t_temp.SetConst(1);
|
|
WriteTensorToVtk(rho_vtk_path, t_temp, sp_mech_mesh_sim);
|
|
spdlog::info("write clamped density vtk to: {}",
|
|
rho_vtk_path.c_str());
|
|
|
|
// extract temperature (vtk)
|
|
fs_path T_vtk_path = output_dir / "vtk" / ex_name /
|
|
(ex_name + suffix + "_T" +
|
|
".vtk");
|
|
WriteNodeToVtk(T_vtk_path, ther_top3d_sim.GetTemperature(),
|
|
sp_thermal_mesh_sim);
|
|
spdlog::info("write temperature vtk to: {}", T_vtk_path.c_str());
|
|
|
|
// extract displacement (vtk)
|
|
fs_path U_vtk_path = output_dir / "vtk" / ex_name /
|
|
(ex_name + suffix + "_U" +
|
|
".vtk");
|
|
WriteNodeToVtk(U_vtk_path, ther_top3d_sim.GetNormedDisplacement(),
|
|
sp_mech_mesh_sim);
|
|
spdlog::info("write displacement norm vtk to: {}",
|
|
U_vtk_path.c_str());
|
|
|
|
// extract stress field(txt or vtk)
|
|
auto t_von_stress = ther_top3d_sim.GetVonStress();
|
|
fs_path von_stress_vtk_path =
|
|
output_dir / "vtk" / ex_name /
|
|
(ex_name + suffix + "_von_stress" +
|
|
".vtk");
|
|
WriteNodeToVtk(von_stress_vtk_path, t_von_stress, sp_mech_mesh_sim);
|
|
spdlog::info("write von stress vtk to: {}",
|
|
von_stress_vtk_path.c_str());
|
|
|
|
// extract compliance
|
|
fs_path compliance_path =
|
|
output_dir / "txt" / ex_name /
|
|
(ex_name + suffix + "_compliance" + ".txt");
|
|
WriteStdVector(compliance_path, ther_top3d_sim.v_compliance_);
|
|
spdlog::info("write compliance txt to: {}",
|
|
compliance_path.c_str());
|
|
}
|
|
};
|
|
auto ClampAndSimulation = [&](const top::Tensor3d &res_rho,
|
|
const std::string &suffix) {
|
|
// clamp density to 0 or 1
|
|
// set different thresholds to pick a suitable density result
|
|
for (double threshold = 0.2;
|
|
threshold < 0.5 + 0.0001; threshold += 0.05) {
|
|
std::string str_thresh =
|
|
"_thresh" + std::to_string((int) (threshold * 100));
|
|
top::Tensor3d t_rho = res_rho;
|
|
for (int k = 0; k < t_rho.dimension(2); ++k) {
|
|
for (int j = 0; j < t_rho.dimension(1); ++j) {
|
|
for (int i = 0; i < t_rho.dimension(0); ++i) {
|
|
t_rho(i, j, k) = t_rho(i, j, k) >= threshold ? 1 : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
try {
|
|
// mech ther sim
|
|
MechanicalThermalSimulation(t_rho, suffix + str_thresh);
|
|
} catch (std::exception &e) {
|
|
spdlog::error(e.what() + std::string(" skip") + str_thresh);
|
|
}
|
|
}
|
|
};
|
|
|
|
{
|
|
spdlog::critical("postprocess: mechanical result simulation ...");
|
|
// SIM: Mechanical result -> clamped -> MeThSim
|
|
ClampAndSimulation(t_me_rho, "_MeSim");
|
|
}
|
|
|
|
{
|
|
spdlog::critical(
|
|
"postprocess: mechanical thermal result simulation ...");
|
|
// SIM: Mechanical thermal result -> clamped -> MeThSim
|
|
ClampAndSimulation(t_meth_rho, "_MeThSim");
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|