|
|
2 years ago | |
|---|---|---|
| 3rd | 2 years ago | |
| assets | 2 years ago | |
| cmake | 2 years ago | |
| docs/imgs | 2 years ago | |
| examples | 2 years ago | |
| ref | 2 years ago | |
| src | 2 years ago | |
| .gitignore | 2 years ago | |
| CMakeLists.txt | 2 years ago | |
| README.md | 2 years ago | |
README.md
Thermo-elastic/Mechanical Topology Optimization/Simuation
(Optional) temperature limits, optimization of voxel mesh.
This is the implementation of the paper Thermo-elastic topology optimization with stress and temperature constraints. By the way, this procedure realized the thermo-elastic TO(topology optimization)(Thermo-elastic topology optimization with stress and temperature constraints., mechanical TO(top3d.pdf) and corresponding simulations.
Files
3rd/: third-party libraryassets/: user-defined assetsexamples/: several teaching examplesdefined_model_writer: User defined voxel mesh/model as TO/simulation input.clamped_model_writer: Clamped to 0 or 1 of the optimized density.sim_mechanical: Mechanical simulation.sim_thermoelastic: Thermo-elastic simulation.top_mechanical: Mechanical TO.top_thermoelastic: Thermoelastic TO.
output/: output directoryref/: reference materialsrc/: source codecmake/: CMake files
Dependencies
Inside libraries:
- mma: constrained optimization algorithm
- Eigen: linear algebra
- libigl: basic geometry functions
- AMGCL: Linear solver. Optional.
The following dependencies require user installation:
sudo apt install libomp-dev
- SuiteSparse: Linear solver. Optional, NOTE: Use of the Intel MKL BLAS is strongly recommended.
- CUDA Toolkit: CUDA support. Optional (Suggested).
Select a Linear solver
If your matrix has less than 50w of freedom, then it is recommended to choose a direct solver (e.g. SuiteSparse):
- install SuiteSparse.
- Set
ENABLE_AMGCLtoOFFand setENABLE_SUITESPARSEtoONin CMakeLists.txt.
Otherwise, it is recommended to choose an iterative solver (e.g. AMGCL),in CPU:
- install OpenMP and AMGCL.
- Set
ENABLE_AMGCLtoON,ENABLE_AMGCL_CUDAtoOFFandENABLE_SUITESPARSEtoOFFin CMakeLists.txt.
Further, CUDA can be used to speed up the iterative solver:
- install OpenMP, CUDA Toolkit and AMGCL.
- Set
ENABLE_AMGCLtoON,ENABLE_AMGCL_CUDAtoONandENABLE_SUITESPARSEtoOFFin CMakeLists.txt.
Finally, if all options are set to OFF, then the Eigen build-in iterative solver will be chosen.(not recommended).
Build
- set path in CMakeLists.txt.
set(CMAKE_CUDA_COMPILER "/path/to/nvcc") # set path to nvcc
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j 16
Usage
3/28 update
- Use
example/top-thermolastic-compare-3dto run mechanical(Me)/mechanical thermal(MeTh) topology optimization(Top) and simulation(Sim). The procedure run in following order:- Me Top & MeTh Top -> density(*_MeTop_rho.vtk & _MethTop_rho.vtk) and compliance/volume each iteration(_MeTop_compliance.txt *_MeTop_volume.txt & ...)
- clamp density by different threshold(.XX) -> 0/1 density(*_MeSim_threshXX_rho.vtk & *_MeThSim_threshXX_rho.vtk)
- MeTh Sim -> temperature(_T.vtk), displacement(_U.vtk), Von Mise Stress(*_von_stress.vtk). Note: open .vtk via Paraview software.
- Input
- Set parameters in *.json. see comments in
assets/top-thermoelastic-*.json(see comments inassets/config_biclamed.jsonand ref paper for MeTh parameters; see comments inassets/top/config_Lshape.json) - Redirect in
main.cppormain.cuif ENABLE_AMGCL_CUDA is ON:
- Set parameters in *.json. see comments in
- Output see
output/txt/${example_name}/${example_name}_*andoutput/vtk/${example_name}/${example_name}_*.
- See
example/top-thermoelastic-BiclampedStructureorexamples/top-thermoelastic-Lshape-condition.
NOTE:
"//*"inexamples/*/config.jsonfile mean comments.- you can modify
CONFIG_FILE,OUTPUT_DIRandASSETS_DIRinexamples/*/CMAKEList.txt. - you can modify the linear solver arguments
prm.solver.tolandprm.solver.maxiterinsrc/LinearSolver/Amgcl.horsrc/LinearSolver/AmgclCuda.h. - you should modify example content in
*.cpprather than*.cu, the latter is copied from the former by cmake.