You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

71 lines
2.3 KiB

#include <test_common.h>
#include <igl/decimate.h>
#include <igl/sort.h>
#include <igl/sortrows.h>
#include <igl/matlab_format.h>
#include <iostream>
// class decimate : public ::testing::TestWithParam<std::string> {};
TEST_CASE("decimate: hemisphere", "[igl]")
{
// Load a hemisphere centered at the origin. For each original vertex compute
// its "perfect normal" (i.e., its position treated as unit vectors).
// Decimate the model and using the birth indices of the output vertices grab
// their original "perfect normals" and compare them to their current
// positions treated as unit vectors. If vertices have not moved much, then
// these should be similar (mostly this is checking if the birth indices are
// sane).
Eigen::MatrixXd V,U;
Eigen::MatrixXi F,G;
Eigen::VectorXi J,I;
// Load example mesh: GetParam() will be name of mesh file
igl::read_triangle_mesh(test_common::data_path("hemisphere.obj"), V, F);
// Perfect normals from positions
Eigen::MatrixXd NV = V.rowwise().normalized();
// Remove half of the faces
igl::decimate(V,F,F.rows()/2,false,U,G,J,I);
// Expect that all normals still point in same direction as original
Eigen::MatrixXd NU = U.rowwise().normalized();
Eigen::MatrixXd NVI = NV(I,Eigen::all);
REQUIRE (NU.rows() == NVI.rows());
REQUIRE (NU.cols() == NVI.cols());
// Dot product
Eigen::VectorXd D = (NU.array()*NVI.array()).rowwise().sum();
Eigen::VectorXd O = Eigen::VectorXd::Ones(D.rows());
// 0.2 chosen to succeed on 256 face hemisphere.obj reduced to 128 faces
test_common::assert_near(D,O,0.02);
}
TEST_CASE("decimate: closed", "[igl]")
{
const auto test_case = [](const std::string &param)
{
Eigen::MatrixXd V,U;
Eigen::MatrixXi F,G;
Eigen::VectorXi I,J;
// Load example mesh: GetParam() will be name of mesh file
igl::read_triangle_mesh(test_common::data_path(param), V, F);
igl::decimate(V,F,0,false,U,G,I,J);
REQUIRE (4 == U.rows());
REQUIRE (4 == G.rows());
{
Eigen::MatrixXi _;
igl::sort(Eigen::MatrixXi(G),2,true,G,_);
}
{
Eigen::VectorXi _;
igl::sortrows(Eigen::MatrixXi(G),true,G,_);
}
// Tet with sorted faces
Eigen::MatrixXi T(4,3);
T<<
0,1,2,
0,1,3,
0,2,3,
1,2,3;
test_common::assert_eq(G,T);
};
test_common::run_test_cases(test_common::closed_genus_0_meshes(), test_case);
}