
Struct Multidisc Optim
DOI 10.1007/s00158-014-1107-x

EDUCATIONAL ARTICLE

An efficient 3D topology optimization code written in Matlab

Kai Liu · Andrés Tovar

Received: 17 October 2013 / Revised: 19 March 2014 / Accepted: 22 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract This paper presents an efficient and compact
MATLAB code to solve three-dimensional topology opti-
mization problems. The 169 lines comprising this code
include finite element analysis, sensitivity analysis, density
filter, optimality criterion optimizer, and display of results.
The basic code solves minimum compliance problems. A
systematic approach is presented to easily modify the defini-
tion of supports and external loads. The paper also includes
instructions to define multiple load cases, active and pas-
sive elements, continuation strategy, synthesis of compliant
mechanisms, and heat conduction problems, as well as the
theoretical and numerical elements to implement general
non-linear programming strategies such as SQP and MMA.
The code is intended for students and newcomers in the
topology optimization. The complete code is provided in
Appendix C and it can be downloaded from http://top3dapp.
com.

Keywords Topology optimization · MATLAB ·
Compliance · Compliant mechanism · Heat conduction ·
Non-linear programming

1 Introduction

Topology optimization is a computational material distribu-
tion method for synthesizing structures without any precon-
ceived shape. This freedom provides topology optimization

K. Liu (�) · A. Tovar
Department of Mechanical Engineering,
Indiana University-Purdue University Indianapolis,
Indianapolis, IN 46202, USA
e-mail: kailiu@iupui.edu

with the ability to find innovative, high-performance struc-
tural layouts, which has attracted the interest of applied
mathematicians and engineering designers. From the work
of Lucien Schmit in the 1960s (Schmit 1960)—who recog-
nized the potential of combining optimization methods with
finite-element analysis for structural design—and the semi-
nal paper by Bendsøe and Kikuchi (1988), there have been
more than eleven thousand journal publications in this area
(Compendex list as of September 2013), several reference
books (Hassani and Hinton 1998; Bendsøe and Sigmund
2003; Christensen and Klarbring 2009), and a number of
readily available educational computer tools for MATLAB

and other platforms. Some examples of such tools include
the topology optimization program by Liu et al. (2005) for
Femlab, the shape optimization program by Allaire and
Pantz (2006) for FreeFem++, the open source topology
optimization program ToPy by Hunter (2009) for Python,
and the 99-line program for Michell-like truss structures by
Sokół (2011) for Mathematica.

For MATLAB, Sigmund (2001) introduced the 99-line
program for two-dimensional topology optimization. This
program uses stiffness matrix assembly and filtering via
nested loops, which makes the code readable and well-
organized but also makes it slow when solving larger
problems. Andreassen et al. (2011) presented the 88-line
program with improved assembly and filtering strategies.
When compared to the 99-line code in a benchmark prob-
lem with 7500 elements, the 88-line code is two orders of
magnitude faster. From the same research group, Aage et al.
(2013) introduced TopOpt, the first topology optimization
App for hand-held devices.

Also for MATLAB, Wang et al. (2004) introduced the
199-line program TOPLSM making use of the level-set
method. Challis (2010) also used the level-set method but
with discrete variables in a 129-line program. Suresh (2010)

http://top3dapp.com
http://top3dapp.com
mailto:kailiu@iupui.edu

K. Liu and A. Tovar

presented a 199-line program ParetoOptimalTracing
that traces the Pareto front for different volume fractions
using topological sensitivities. More recently, Talischi et al.
(2012a, b) introduced PolyMesher and PolyTop for
density-based topology optimization using polygonal finite
elements. The use of polygonal elements makes these pro-
grams suitable for arbitrary non-Cartesian design domains
in two dimensions.

One of the few contributions to three-dimensional MAT-
LAB programs is presented by Zhou and Wang (2005). This
code, referred to as the 177-line program, is a successor
to the 99-line program by Sigmund (2001) that inherits
and amplifies the same drawbacks. Our paper presents a
169-line program referred to as top3d that incorporates
efficient strategies for three-dimensional topology opti-
mization. This program can be effectively used in personal
computers to generate structures of substantial size. This
paper explains the use of top3d in minimum compli-
ance, compliant mechanism, and heat conduction topology
optimization problems.

The rest of this paper is organized as follows. Section 2
briefly reviews theoretical aspects in topology optimiza-
tion with focus on the density-based approach. Section 3
introduces 3D finite element analysis and its numerical
implementation. Section 4 presents the formulation of three
typical topology optimization problems, namely, minimum
compliance, compliant mechanism, and heat conduction.
Section 5 discusses the optimization methods and their
implementation in the code. Section 6 shows the numer-
ical implementation procedures and results of three dif-
ferent topology optimization problems, several extensions
of the top3d code, and multiple alternative implementa-
tions. Finally, Section 7, offers some closing thoughts. The
top3d code is provided in Appendix C and can also be
downloaded for free from the website: http://top3dapp.com.

2 Theoretical background

2.1 Problem definition and ill-posedness

A topology optimization problem can be defined as a binary
programming problem in which the objective is to find
the distribution of material in a prescribed area or volume
referred to as the design domain. A classical formulation,
referred to as the binary compliance problem, is to find the
“black and white” layout (i.e., solids and voids) that min-
imizes the work done by external forces (or compliance)
subject to a volume constraint.

The binary compliance problem is known to be ill-posed
(Kohn and Strang 1986a, b, c). In particular, it is possible
to obtain a non-convergent sequence of feasible black-
and-white designs that monotonically reduce the structure’s

compliance. As an illustration, assume that a design has
one single hole. Then, it is possible to find an improved
solution with the same mass and lower compliance when
this hole is replaced by two smaller holes. Improved solu-
tions can be successively found by increasing the number
of holes and reducing their size. The design will progress
towards a chattering design within infinite number of holes
of infinitesimal size. That makes the compliance problem
unbounded and, therefore, ill-posed.

One alternative to make the compliance problem well-
posed is to control the perimeter of the structure (Haber and
Jog 1996; Jog 2002). This method effectively avoids chat-
tering configurations, but its implementation is not free of
complications. It has been reported that the addition of a
perimeter constraint creates fluctuations during the iterative
optimization process so internal loops need to be incorpo-
rated (Duysinx 1997) Op. cit. (Bendsøe and Sigmund 2003).
Also, small variations in the parameters of the algorithm
lead to dramatic changes in the final layout (Jog 2002).

2.2 Homogenization method

Another alternative is to relax the binary condition and
include intermediate material densities in the problem for-
mulation. In this way, the chattering configurations become
part of the problem statement by assuming a periodically
perforated microstructure. The mechanical properties of the
material are determined using the homogenization theory.
This method is referred to as the homogenization method
for topology optimization (Bendsøe 1995; Allaire 2001).
The main drawback of this approach is that the optimal
microstructure, which is required in the derivation of the
relaxed problem, is not always known. This can be allevi-
ated by restricting the method to a subclass of microstruc-
tures, possibly suboptimal but fully explicit. This approach,
referred to as partial relaxation, has been utilized by many
authors including Bendsøe and Kikuchi (1988), Allaire
and Kohn (1993), Allaire et al. (2004), and references
therein.

An additional problem with the homogenization meth-
ods is the manufacturability of the optimized structure.
The “gray” areas found in the final designs contain micro-
scopic length-scale holes that are difficult or impossible
to fabricate. However, this problem can be mitigated with
penalization strategies. One approach is to post-process the
partially relaxed optimum and force the intermediate den-
sities to take black or white values (Allaire et al. 1996).
This a posteriori procedure results in binary designs, but it
is purely numerical and mesh dependent. Other approach
is to impose a priori restrictions on the microstructure that
implicitly lead to black-and-white designs (Bendsøe 1995).
Even though penalization methods have shown to be effec-
tive in avoiding or mitigating intermediate densities, they

http://top3dapp.com

An efficient 3D topology optimization code written in Matlab

revert the problem back to the original ill-possedness with
respect to mesh refinement.

2.3 Density-based approach

An alternative that avoids the application of homogenization
theory is to relax the binary problem using a continu-
ous density value with no microstructure. In this method,
referred to as the density-based approach, the material dis-
tribution problem is parametrized by the material density
distribution. In a discretized design domain, the mechan-
ical properties of the material element, i.e., the stiffness
tensor, are determined using a power-law interpolation func-
tion between void and solid (Bendsøe 1989; Mlejnek 1992).
The power law may implicitly penalize intermediate density
values driving the structure towards a black-and-white con-
figuration. This penalization procedure is usually referred
to as the Solid Isotropic Material with Penalization (SIMP)
method (Zhou and Rozvany 1991). The SIMP method does
not solve the problem’s ill-possedness, but it is simpler than
other penalization methods.

The SIMP method is based on a heuristic relation
between (relative) element density xi and element Young’s
modulus Ei given by

Ei = Ei(xi) = x
p

i E0, xi ∈]0, 1], (1)

where E0 is the elastic modulus of the solid material and p is
the penalization power (p > 1). A modified SIMP approach
is given by

Ei = Ei(xi) = Emin + x
p
i (E0 − Emin), xi ∈ [0, 1], (2)

where Emin is the elastic modulus of the void material,
which is non-zero to avoid singularity of the finite element
stiffness matrix. The modified SIMP approach, as (2), offers
a number of advantages over the classical SIMP formula-
tion, as shown in (1), including the independency between
the minimum value of the material’s elastic modulus and the
penalization power (Sigmund 2007).

However, topology optimization methods are likely to
encounter numerical difficulties such as mesh-dependency,
checkerboard patterns, and local minima (Bendsøe and
Sigmund 2003). In order to mitigate such issues, resear-
chers have proposed the use of regularization techniques
(Sigmund and Peterson 1998). One of the most common
approaches is the use of density filters (Bruns and Tortorelli
2001). A basic filter density function is defined as

x̃i =
∑

j∈Ni
Hij vjxj

∑
j∈Ni

Hij vj
, (3)

where Ni is the neighborhood of an element xi with volume
vi , and Hij is a weight factor. The neighborhood is defined
as

Ni = {j : dist(i, j) � R} , (4)

where the operator dist(i, j) is the distance between the cen-
ter of element i and the center of element j , and R is the
size of the neighborhood or filter size. The weight factor
Hij may be defined as a function of the distance between
neighboring elements, for example

Hij = R − dist(i, j), (5)

where j ∈ Ni . The filtered density x̃i defines a modi-
fied (physical) density field that is now incorporated in the
topology optimization formulation and the SIMP model as

Ei (x̃i) = Emin + x̃pi (E0 − Emin), x̃i ∈ [0, 1]. (6)

The regularized SIMP interpolation formula defined by (6)
used in this work.

3 Finite element analysis

3.1 Equilibrium equation

Following the regularized SIMP method given by (6) and
the generalized Hooke’s law, the three-dimensional consti-
tutive matrix for an isotropic element i is interpolated from
void to solid as

Ci (x̃i) = Ei (x̃i)C0
i , x̃i ∈ [0, 1], (7)

where C0
i is the constitutive matrix with unit Young’s

modulus. The unit constitutive matrix is given by

C0
i =

1

(1 + ν)(1 − 2ν)
×

⎡

⎢
⎢
⎢
⎢
⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1 − 2ν)/2 0 0
0 0 0 0 (1 − 2ν)/2 0
0 0 0 0 0 (1 − 2ν)/2

⎤

⎥
⎥
⎥
⎥
⎦
, (8)

where ν is the Poisson’s ratio of the isotropic material.
Using the finite element method, the elastic solid element
stiffness matrix is the volume integral of the elements con-
stitutive matrix Ci(x̃i) and the strain–displacement matrix
B in the form of

ki (x̃i) =
∫ +1

−1

∫ +1

−1

∫ +1

−1
BTCi(x̃i)Bdξ1dξ2dξ3, (9)

where ξe (e = 1, . . . , 3) are the natural coordinates as
shown in Fig. 1, and the hexahedron coordinates of the cor-
ners are shown in Table 1. The strain–displacement matrix
B relates the strain ε and the nodal displacement u, ε = Bu.
Using the SIMP method, the element stiffness matrix is
interpolated as

ki (x̃i) = Ei (x̃i)k0
i , (10)

K. Liu and A. Tovar

1 2

34

5 6

78

ξ1

ξ2

ξ3

Fig. 1 The eight-node hexahedron and the natural coordinates
ξ1, ξ2, ξ3

where

k0
i =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTC0Bdξ1dξ2dξ3. (11)

Replacing values in (11), the 24 × 24 element stiffness
matrix k0

i for an eight-node hexahedral element is

k0
i =

1

(ν + 1)(1 − 2ν)

⎡

⎢
⎢
⎣

k1 k2 k3 k4

kT
2 k5 k6 kT

4
kT

3 k6 kT
5 kT

2
k4 k3 k2 kT

1

⎤

⎥
⎥
⎦ (12)

where km (m = 1, . . . , 6) are 6×6 symmetric matrices (see
Appendix A). One can also verify that k0

i is positive definite.
The global stiffness matrix K is obtained by the assembly
of element-level counterparts ki ,

K(x̃) = An
i=1ki (x̃i) = An

i=1Ei (x̃i)k0
i , (13)

where n is the total number of elements. Using the global
versions of the element stiffness matrices Ki and K0

i , (13)
is expressed as

K(x̃) =
n∑

i=1

Ki(x̃i) =
n∑

i=1

Ei(x̃i)K0
i . (14)

Table 1 The eight-node hexahedral element with node numbering
conventions

Node ξ1 ξ2 ξ3

1 −1 −1 −1

2 +1 −1 −1

3 +1 +1 −1

4 −1 +1 −1

5 −1 −1 +1

6 +1 −1 +1

7 +1 +1 +1

8 −1 +1 +1

where K0
i is a constant matrix. Using the interpolation

function defined in (6), one finally observes that

K(x̃) =
n∑

i=1

[
Emin + x̃pi (E0 − Emin)

]
K0

i . (15)

Finally, the nodal displacements vector U(x̃) is the solu-
tion of the equilibrium equation

K(x̃)U(x̃) = F, (16)

where F is the vector of nodal forces and it is independent
of the physical densities x̃. For brevity of notation, we omit-
ted the dependence of physical densities x̃ on the design
variables x, x̃ = x̃(x).

3.2 Numerical implementation

Consider the discretized prismatic structure in Fig. 2 com-
posed of eight eight-noded cubic elements. The nodes
identified with a number (node ID) ordered column-wise
up-to-bottom, left-to-right, and back-to-front. The position
of each node is defined with respect to Cartesian coordinate
system with origin at the left-bottom-back corner.

Within each element, the eight nodes N1, . . . , N8 are
ordered in counter-clockwise direction as shown in Fig. 3.
Note that the “local” node number (Ni) does not follow the
same rule as the “global” node ID (NIDi) system in Fig. 2.
Given the size of the volume (nelx× nely× nelz) and
the global coordinates of node N1 (x1, y1, z1), one can iden-
tify the global node coordinates and node IDs of the other
seven nodes in that element by the mapping the relationships
as summarized in Table 2.

Each node in the structure has three degrees of free-
dom (DOFs) corresponding to linear displacements in x-y-z
directions (one element has 24 DOFs). The degrees of free-
dom are organized in the nodal displacement vector U
as

U = [U1x, U1y, U1z, . . . , U8×nz

]T
,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

x

y

z

Fig. 2 Global node IDs in a prismatic structure composed of 8
elements

An efficient 3D topology optimization code written in Matlab

N1 N2

N4 N3

N8 N7

N5 N6

x
y

z

Fig. 3 Local node numbers within a cubic element

where n is the number of elements in the structure. The loca-
tion of the DOFs in U, and consequently K and F, can be
determined from the node ID as shown in Table 2.

The node IDs for each element are organized in a con-
nectivity matrix edofMat with following MATLAB lines:

where nele is the total number of elements, nodegrd
contains the node ID of the first grid of nodes in the x-y
plane (for z = 0), the column vector edofVec contains
the node IDs of the first node at each element, and the con-
nectivity matrix edofMat of size nele × 24 containing

the node IDs for each element. For the volume in Fig. 2,
nelx = 4, nely = 1, and nelz = 2, which results in

edofMat =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 5 6 · · · 31 32 33
10 11 12 · · · 37 38 39
16 17 18 · · · 43 44 45
22 23 24 · · · 49 50 51
34 35 36 · · · 61 62 63
40 41 42 · · · 67 68 69
46 47 48 · · · 73 74 75
52 53 54 · · · 79 80 81

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

← Element 1
← Element 2
← Element 3
← Element 4
← Element 5
← Element 6
← Element 7
← Element 8 .

The element connectivity matrix edofMat is used to
assemble the global stiffness matrix K as follows:

The element stiffness matrix KE (size 24×24) is obtained
from the lk H8 subroutine (lines 99-146). Matrices iK
(size 24 nele×24) and jK (size nele×242), reshaped as
column vectors, contain the rows and columns identifying
the 24 × 24 × nele DOFs in the structure. The three-
dimensional array xPhys (size nely × nelx × nelz)
corresponds to the physical densities. The matrix sK (size
242 × nele) contains all element stiffness matrices. The
assembly procedure of the (sparse symmetric) global stiff-
ness matrix K (line 71) avoids the use of nested for
loops.

Finally, the nodal displacement vector U is obtained
from the solution of the equilibrium equation (16) by pre-
multiplying the inverse of the stiffness matrix K and the
vector of nodal forces F,

Table 2 Illustration of relationships between node number, node coordinates, node ID and node DOFs

Node Number Node coordinates Node ID Node Degree of Freedoms

x y z

N1 (x1, y1, z1) NID†
1 3 ∗ NID1 − 2 3 ∗ NID1 − 1 3 ∗ NID1

N2 (x1 + 1, y1, z1) NID2 = NID1 + (nely + 1) 3 ∗ NID2 − 2 3 ∗ NID2 − 1 3 ∗ NID2

N3 (x1 + 1, y1 + 1, z1) NID3 = NID1 + nely 3 ∗ NID3 − 2 3 ∗ NID3 − 1 3 ∗ NID3

N4 (x1, y1 + 1, z1) NID4 = NID1 − 1 3 ∗ NID4 − 2 3 ∗ NID4 − 1 3 ∗ NID4

N5 (x1, y1, z1 + 1) NID5 = NID1 + NID‡
z 3 ∗ NID5 − 2 3 ∗ NID5 − 1 3 ∗ NID5

N6 (x1 + 1, y1, z1 + 1) NID6 = NID2 + NIDz 3 ∗ NID6 − 2 3 ∗ NID6 − 1 3 ∗ NID6

N7 (x1 + 1, y1 + 1, z1 + 1) NID7 = NID3 + NIDz 3 ∗ NID7 − 2 3 ∗ NID7 − 1 3 ∗ NID7

N8 (x1, y1 + 1, z1 + 1) NID8 = NID4 + NIDz 3 ∗ NID8 − 2 3 ∗ NID8 − 1 3 ∗ NID8

†
NID1 = z1*(nelx+1)*(nely+1)+x1∗(nely+1)+(nely+1 − y1)

‡
NIDz = (nelx+1)*(nely+1)

K. Liu and A. Tovar

where the indices freedofs indicate the unconstrained
DOFs. For the cantilevered structure in Fig. 2, the con-
strained DOFs

where jf, and kf are the coordinate of the fixed nodes,
fixednid are the node IDs, and fixeddof are the
location of the DOFs. The free DOFs, are then defined as

where ndof is the total number of DOFs. By default, the
code constraints the left face of the prismatic structure and
assigns a vertical load to the structure’s free-lower edge as
depicted in Fig. 2. The user can define different load and
support DOFs by changing the corresponding node coordi-
nates (lines 12 and 16). Several examples are presented in
Section 6.

4 Optimization problem formulation

Three representative topology optimization problems are
described in this section, namely: minimum compliance,
compliant mechanism synthesis, and heat conduction.

4.1 Minimum compliance

The objective of the minimum compliance problem is to
find the material density distribution x̃ that minimizes the
structure’s deformation under the prescribed support and
loading condition. The structure’s compliance, which pro-
vides a global measure of deformation, is defined as

c(x̃) = FTU(x̃), (17)

where F is the vector of nodal forces and U(x̃) is the vector
of nodal displacements. Incorporating a volume constraint,
the minimum compliance optimization problem is

find x = [x1, x2, . . . , xe, . . . , xn]T
minimize c(x̃) = FTU(x̃)

subject to v(x̃) = x̃Tv − v̄ � 0

x ∈ X , X = {x ∈ R
n : 0 � x � 1},

(18)

where the physical densities x̃ = x̃(x̃) are defined by (3),
n is the number of elements used to discretize the design
domain, v = [v1, . . . , vn]T is a vector of element volume,
and v̄ is the prescribed volume limit of the design domain.
The nodal force vector F is independent of the design vari-
ables and the nodal displacement vector U(x̃) is the solution
of K(x̃)U(x̃) = F.

The derivative of the volume constraint v(x̃) in (18) with
respect to the design variable xe is given

∂v(x̃)
∂xe

=
∑

i∈Ne

∂v(x̃)
∂x̃i

∂x̃i

∂xe
(19)

where

∂v(x̃)
∂ x̃i

= vi (20)

and

∂x̃i

∂xe
= Hieve
∑

j∈Ni
Hij vj

. (21)

The code uses a mesh with equally sized cubic elements of
unit volume, then vi = vj = ve = 1.

The derivative of the compliance is

∂c(x̃)
∂xe

=
∑

i∈Ne

∂c(x̃)
∂x̃i

∂x̃i

∂xe
(22)

where ∂x̃i/∂xe is given by (21) and

∂c(x̃)
∂ x̃i

= FT ∂U(x̃)
∂ x̃i

= U(x̃)TK(x̃)
∂U(x̃)
∂ x̃i

. (23)

The derivative of (16) with respect to x̃i is

∂K(x̃)
∂ x̃i

U(x̃)+ K(x̃)
∂U(x̃)
∂ x̃i

= 0, (24)

which yields

∂U(x̃)
∂ x̃i

= −K(x̃)−1 ∂K(x̃)
∂ x̃i

U(x̃). (25)

Using (15),

∂K(x̃)
∂ x̃i

= ∂

∂ x̃i

n∑

i=1

[
Emin + x̃pi (E0 − Emin)

]
K0

i

= px̃p−1
i (E0 − Emin)K0

i . (26)

Using (25) and (26), (23) results in

∂c(x̃)
∂ x̃i

= −U(x̃)T
[
px̃p−1

i (E0 − Emin)K0
i

]
U(x̃). (27)

Since K0
i is the global version of an element matrix, (27)

may be transformed from the global level to the element
level, obtaining

∂c(x̃)
∂ x̃i

= −ui (x̃)T
[
px̃p−1

i (E0 − Emin)k0
i

]
ui (x̃). (28)

where ui is the element vector of nodal displacements. Since
k0
i is positive definite, ∂c(x̃)/∂ x̃i < 0.

An efficient 3D topology optimization code written in Matlab

The numerical implementation of minimum compliance
problem can be done as the following:

The objective function in (18) is calculated in Line 75.
The sensitivities of the objective function and volume frac-
tion constraint with respect to the physical density are given
be lines 76-77. Finally, the chain rule as stated in (22) is
deployed in lines 79-80.

4.2 Compliant mechanism synthesis

A compliant mechanism is a morphing structure that under-
goes elastic deformation to transform force, displacement,
or energy (Bruns and Tortorelli 2001). A typical goal for a
compliant mechanism design is to maximize the output port
displacement. The optimization problem is

find x̃ = [x1, x2, . . . , xe, . . . , xn]T
minimize c(x̃) = −uout(x̃) = −LTU(x̃)

subject to v
(
x̃
) = x̃Tv − v̄ � 0

x ∈ X , X = {x ∈ R
n : 0 � x � 1},

(29)

where L is a unit length vector with zeros at all degrees
of freedom except at the output point where it is one, and
U
(
x̃
) = K

(
x̃
)−1 F.

To obtain the sensitivity of the new cost function c(x̃) in
(29), let us define a global adjoint vector Ud(x̃) from the
solution of the adjoint problem

K(x̃)Ud(x̃) = −L. (30)

Using (30) in (29), the objective function can be expressed
as

c(x̃) = Ud(x̃)TK(x̃)U(x̃). (31)

The derivative of c(x̃) with respect to the design variable
xe is again obtained by the chain rule,

∂c(x̃)
∂xe

=
∑

i∈Ne

∂c(x̃)
∂x̃i

∂x̃i

∂xe
,

where ∂x̃i/∂xe is described by (21), and ∂c(x̃)/∂ x̃i can be
obtained using direct differentiation. The use of the interpo-
lation given by (6) yields an expression similar to the one
obtained in (28),

∂c(x̃)
∂x̃i

= udi(x̃)T
[
px̃

p−1
i (E0 − Emin)k0

i

]
ui (x̃). (32)

where udi(k0
i) is the part of the adjoint vector associated

with element i. In this case, ∂c(k0
i)/∂ x̃i may be positive or

negative.
The numerical implementation of the objective function

(31) and sensitivity (32) are

Vector Ud (Line 74a) is the dummy load displacement
field and vector U (line 74b) is the input load displace-
ment. The codes for the implementation of chain rule are
not shown above since they are same as lines 79-80.

4.3 Heat conduction

Heat in physics is defined as energy transferred between
a system and its surrounding. The direct microscopic
exchange of kinetic energy of particles through the bound-
ary between two systems is called diffusion or heat con-
duction. When a body is at a different temperature from its
surrounding, heat flows so that the body and the surround-
ings reach the same temperature. This condition is known
as thermal equilibrium. The equilibrium condition for heat
transfer in finite element formulation is described by

K(k0
i)U(k0

i) = F,

where U(k0
i) now donates the finite element global nodal

temperature vector, F donates the global thermal load vec-
tor, and K(k0

i) donates the global thermal conductivity
matrix. For a material with isotropic properties, conductivity
is the same in all directions.

The optimization problem for heat conduction is

find k0
i = [x1, x2, . . . , xe, . . . , xn]T

minimize c(k0
i) = FTU(k0

i)

subject to v
(
x̃
) = x̃Tv − v̄ � 0

x ∈ X , X = {x ∈ R
n : 0 � x � 1},

(33)

where U
(
x̃
) = K

(
x̃
)−1 F, and K(x̃) is obtained by the

assembly of element thermal conductivity matrices ki(x̃i).
Following the interpolation function in (6), the element
conductivity matrix is expressed as

ki (x̃i) =
[
kmin + (k0 − kmin)x̃

p
i

]
k0
i , (34)

where kmin and k0 represent the limits of the material’s
thermal conductivity coefficient and k0

i donates the ele-
ment conductivity matrix. Note that (34) may be considered
as the distribution of two material phases: a good thermal
conduction (k0) and the other a poor conductor (kmin).

K. Liu and A. Tovar

The sensitivity analysis of the cost function in (33) is
given by

∂c(x̃)
∂xe

=
∑

i∈Ne

∂c(x̃)
∂x̃i

∂x̃i

∂xe
,

where ∂x̃i/∂xe is described by (21) and

∂c(x̃)
∂x̃i

= −ui (x̃)T
[
(k0 − kmin)px̃

p−1
i k0

i

]
ui (x̃). (35)

The numerical implementation only requires an optional
change in the material property name:

where k0 and kmin are the limits of the material’s thermal
conductivity. The chain rule is applied same as before.

5 Optimization algorithms

Non-linear programming (NLP) problems, such as mini-
mum compliance (18), compliant mechanism (29), and heat
conduction (33), can be addressed using sequential convex
approximations such as sequential quadratic programming
(SQP) (Wilson 1963) and the method of moving asymptotes
(MMA) (Svanberg 1987). The premise of these methods is
that, given a current design x(k), the NLP algorithm is able
to find a convex approximation of the original NLP prob-
lem from which an improved design x(k+1) can be derived.
The nature of the problem’s approximation is determined
by the type of algorithm, e.g., quadratic programming (QP)
or MMA. An special case of the latter approach, which is
historically older than SQP and MMA, is the optimality
criterion (OC) method. This method still find its place in
topology optimization due to its numerical simplicity and
numerical efficiency (Christensen and Klarbring 2009). The
following sections presents the implementation of the SQP,
MMA, and OC methods to the solution of the minimum
compliance topology optimization problems presented in
this paper.

5.1 Sequential quadratic programming

A QP problem has a quadratic objective function and linear
constraints (Nocedal and Wright 2006). Given the current
design x(k) and all corresponding active constraints, the QP

approximation of the minimum compliance problem in (18)
can be expressed as

find d

minimize
1

2
dT∇2c(k)d +∇c(k)

T
d

subject to Ad = 0,

(36)

where c(k) is the value of the objective function evaluated at
x(k) and d = x − x(k), and A is the matrix of active con-
straints. The optimality and feasibility conditions of (36)
yield

∇2c(k)d + ATλ = −∇c(k)

Ad = 0
(37)

This SQP approach, referred to as the active set algorithm
(Nocedal and Wright 2006), allows to determine a step d̃(k)

from the solution of the of system of linear equations in (37)
expressed as
[∇2c(k) AT

A 0

] [
d(k)

λ(k)

]

=
[−∇c(k)

0

]

. (38)

The updated design is given by

x(k+1) = x(k) + α(k)d(k), (39)

where the step size parameter α(k) is determined by a
line search procedure. The Hessian ∇2c(k) can be numeri-
cally approximated but, for the problems considered in this
paper, one can determined the closed-form expression (see
Appendix B), which is given by

∂2c

∂ x̃i∂ x̃j
=

⎧
⎪⎪⎨

⎪⎪⎩

0, i �= j,

2
[
px̃p−1

i (E0 − Emin)
]2

[
Emin + x̃pi (E0 − Emin)

]−1 uT
i k0

i ui ,

i = j.

(40)

This line-search, active-set SQP algorithm is summarized in
Algorithm 1.

Algorithm 1 SQP Algorithm

Choose an initial feasible design x(0); set k ← 0;
while (convergence criteria are not met) do

Evaluate c(k), ∇c(k) (28), ∇2c(k) (40);
Identify active constraint matrix A in (36);
Solve for d(k) (38);
Find appropriate step size α(k);
Set x(k+1) ← x(k) + α(k)d(k);
Set k ← k + 1

end while

An efficient 3D topology optimization code written in Matlab

The implementation of (40) in the program can be done
in just two lines, since the term uT

i + k0
i + ui has already

been calculated, namely matrix ce in line 74:

Finally, MATLAB has built-in constrained NLP solver
fmincon. The implementation of using fmincon as an
optimizer in our top3d program is quite easy, but need
some reconstructions of the program (one needs to divide
program into different subfunctions, e.g., objective function,
constraint function, Hessian function). To further assist on
the implementation of an SQP strategy, the reader can find
a step-by-step tutorial on our website http://top3dapp.com.

5.2 Method of moving asymptotes

The MMA algorithm (Svanberg 1987) was proposed to
adjust the curvature of the convex linearization (CON-
LIN) method introduced by Fleury (1989). Give the cur-
rent design x(k) the MMA approximation of the minimum
compliance problem in (18) yields to the following linear
programming problem:

find x

minimize −
n∑

i=1

⎡

⎢
⎣

(
x
(k)
i − L

(k)
i

)2

xi − L
(k)
i

∂c

∂xi

(
x̃(k)
)
⎤

⎥
⎦

subject to x̃Tv − v̄ � 0

x ∈ X (k),

(41)

where

X (k) = {x ∈ X | 0.9L(k)
i + 0.1x(k)i � xi � 0.9U(k)

i

+0.1x(k)i , i = 1, . . . , n
}
. (42)

The lower and upper asymptotes L
(k)
i and U

(k)
i are iter-

atively updated to mitigate oscillation or improve conver-
gence rate. The heuristic rule proposed by Svanberg (1987)
is as follows: For k = 1 and k = 2,

U
(k)
i + L

(k)
i = 2x(k)i ,

U
(k)
i − L

(k)
i = 1.

(43)

For k � 3,

U
(k)
i + L

(k)
i = 2x(k)i ,

U
(k)
i − L

(k)
i = γ

(k)
i ,

(44)

where

γ
(k)
i =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.7
(
x
(k)
i − x

(k−1)
i

)(
x
(k−1)
i − x

(k−2)
i

)
< 0

1.2
(
x
(k)
i − x

(k−1)
i

)(
x
(k−1)
i − x

(k−2)
i

)
> 0

1
(
x
(k)
i − x

(k−1)
i

)(
x
(k−1)
i − x

(k−2)
i

)
= 0

(45)

Note from (45) that the signs of three successive iterations
are stored. If the signs are opposite, meaning xi oscillates,
the two asymptotes are brought closer to x

(k)
i to have a more

conservative MMA approximation. On the other hand, if
the signs are same, the two asymptotes are extended away
from x

(k)
i in order to speed up the convergence. The MMA

algorithm is explained in Algorithm 2.

Algorithm 2 MMA Algorithm

Choose an initial feasible design x(0); set k ← 0;
while (convergence criteria are not met) do

if k = 1 or k = 2 then
Update Lk

i , and Uk
i using (43);

else
Update Lk

i , and Uk
i using (44) and (45);

end if
Calculate derivate (28);
Solve the MMA subproblem (41) to obtain x̃(k+1);
Set x(k−2) ← x(k−1), x(k−1) ← x(k), x(k) ← x(k+1);
Set k ← k + 1;

end while

The MMA algorithm is available for MATLAB

(mmasub). The reader may obtain a copy by contacting
Prof. Krister Svanberg (http://www.math.kth.se/∼krille/
Welcome.html) from KTH in Stockholm Sweden. Although
mmasub has total of 29 input and output variables, its
implementation for top3d is straightforward. The details
can be found at http://top3dapp.com.

5.3 Optimality criteria

A classical approach to structural optimization problems
is the Optimality Criteria (OC) method. The OC method
is historically older than sequential approximation methods
such as Sequential Linear Programming (SLP) or SQP. The
OC method is formulated on the grounds that if constraint
0 � x � 1 is inactive, then convergence is achieved when
the KKT condition

∂c(x̃)
∂xe

+ λ
∂v(x̃)
∂xe

= 0, (46)

http://top3dapp.com
http://www.math.kth.se/~krille/Welcome.html
http://www.math.kth.se/~krille/Welcome.html
http://top3dapp.com

K. Liu and A. Tovar

is satisfied for k = 1, . . . , n, where λ is the Lagrange mul-
tiplier associated with the constraint v(x̃). This optimality
condition can be expressed as Be = 1, where

Be = −∂c(x̃)
∂xe

(

λ
∂v(x̃)
∂xe

)−1

. (47)

The code implements the OC updating scheme proposed
by (Bendsøe 1995) to update design variables:

xnew
e =

⎧
⎨

⎩

max(0, xe −m), ifxeB
η
e � max(0, xe −m),

min(1, xe +m), ifxeB
η
e � min(1, xe −m),

xeB
η
e , otherwise,

(48)

where m is a positive move-limit, and η is a numerical
damping coefficient. The choice of m = 0.2 and η = 0.5 is
recommended for minimum compliance problems (Bendsøe
1995; Sigmund 2001). For compliant mechanisms, η =
0.3 improves the convergence of the algorithm. The only
unknown in (48) is the value of the Lagrange multiplier λ,
which satisfies that

v(x̃(xnew(λ))) = 0. (49)

Numerically, λ is found by a root-finding algorithm such
as the bisection method. Finally, the termination criteria are
satisfied when a maximum number of iterations is reached
or

||xnew − x||∞ � ε, (50)

where the tolerance ε is a relatively small value, for example
ε = 0.01.

The numerical implementation begins with the initializa-
tion of design and physical variables,

where volfrac represents the volume fraction limit. Ini-
tially, the physical densities are assigned a constant uniform
value, which is iteratively updated following the OC updat-
ing scheme (Algorithm 3).

6 Numerical examples

The code is executed MATLAB with the following com-
mand:

where nelx, nely, and nelz are number of elements
along x, y, and z directions, volfrac is the volume
fraction limit (v̄), penal is the penalization power (p),
and rmin is filter size (R). User-defined variables are
set between lines 3 and 18. These variables determine the
material model, termination criteria, loads, and supports.
The following examples demonstrate the application of the

Algorithm 3 OC Algorithm

Choose an initial design x(k); set k ← 0;
while (convergence criteria are not met) do

FE-analysis using (16) to obtain the corresponding
nodal displacement U(k);

Compute objective function, e.g., compliance c, out-
put displacement uout;

Sensitivity analysis by using the equations as dis-
cussed in Section 4;

Apply filter techniques, e.g. (3) in Section 2.3 or any
other filters like those discussed in Section 6.1.4

Update design variables using (48) to obtain x(k+1);
Set x(k+1) ← x(k); Set k ← k + 1;

end while

code to minimum compliance problems, and its exten-
sion to compliant mechanism synthesis and heat
condition.

6.1 Minimum compliance

By default, the code solves a minimum compliance problem
for the cantilevered beam in Fig. 4. The prismatic design
domain is fully constrained in one end and a unit distributed
vertical load is applied downwards on the lower free edge.
Figure 4 shows the topology optimization results for solving
minimum compliance problem with the following MATLAB

input lines:

x

y

z

Fig. 4 Topology optimization of 3D cantilever beam. Top Initial
design domain, bottom topology optimized beam

An efficient 3D topology optimization code written in Matlab

x

y

z

Fig. 5 Topology optimization of 3D wheel. Top Initial design domain,
bottom topology optimized result

6.1.1 Boundary conditions

The boundary conditions and loading conditions are defined
in lines 12-18. Since the node coordinates and node numbers
are automatically mapped by the program, defining different
boundary conditions is very simple. To solve a 3D wheel
problem as shown in Fig. 5, which is constrained by planar
joint on the corners with a downward point load in the center
of the bottom, the following changes need to be made:

Firstly, changing loading conditions

Secondly, defining the corresponding boundary condi-
tions

then the problem can be promoted by line:

6.1.2 Multiple load cases

In order to solve a multiple load cases problem, as shown
in Fig. 6, a few changes need to be made. First, the loading
conditions (line 12) are changed correspondingly:

Also the force vector (line 22) and displacement vector
(line 23) become more than one column:

The objective function is now the sum of different load
cases

c(x̃) =
M∑

l=1

cl(x̃) =
M∑

l=1

FT
l Ul

(
x̃
)

(51)

where M is the number of load cases.

1

2

x

y

z

Fig. 6 Topology optimization of cantilever beam with multiple load cases. Left Initial design domain, middle topology optimized beam with one
load case, and right topology optimized beam with two load cases

K. Liu and A. Tovar

Then lines 74–76 are substituted with lines

This example is promoted by the line

6.1.3 Active and passive elements

In some designs, some elements may be desired to be solid
or void. A nely× nelx× nelz matrix with ones at ele-
ments desired to be solid, and a nely × nelx × nelz
matrix with zeros at elements desired to be void can be
added to the program. To solve the problem as shown in
Fig. 7, the passive elements need to be defined first by
adding the following lines after line 62:

In addition, one line is added in the OC subroutine under
line 85:

The optimized beam shown in Fig. 7 is promoted by the
line

6.1.4 Alternative filters

In the topology optimization, filters are introduced to avoid
numerical instabilities. Different filtering techniques may
result different discreteness of the final solutions, and some-
times may even contribute to different topologies. In addi-
tion to density filter, in the literatures there are bunch of
different filtering schemes. For example, sensitivity filter
(Sigmund 1994, 1997), morphology based black and white

x

y

z

Fig. 7 Topology optimization of cantilever beam with passive design
domain. Top Initial design domain, bottom topology optimized beam

filters (Sigmund 2007), filtering technique using MATLAB

built-in function conv2 (Andreassen et al. 2011), filtering
based on Helmholtz type differential equations (Andreassen
et al. 2011), Heaviside filter (Guest et al. 2004, 2011), and
gray scale filter (Groenwold and Etman 2009). All the filters
pursue a simple goal to achieve black-and-white structures.
Two of them are chosen, which stand for classic and better
performance, as well as easy implementation.

Sensitivity filter Sigmund (1994, 1997) introduced the sen-
sitivity filter. The working principle is to replace the real
sensitivities by the filtered sensitivities. In addition, the sen-
sitivity filter is implemented in the 99-line code as the
default filtering scheme. It modifies the element sensitivity
during every iteration by the following

∂̂c(x)
∂xi

= 1

max(γ, xi)
∑

j∈Ni
Hij

∑

j∈Ni

Hij xj
∂c(x)
∂xj

.

where γ (= 10−3) is a small number in order to avoid
division by zero.

The implementation of the sensitivity filter can be
achieved by adding and changing a few lines.

Change line 2 by adding one input variable ft (ft = 1
for density filter, ft = 2 for sensitivity filter)

Adding the sensitivity filter to the program, by changing
lines 79-80

An efficient 3D topology optimization code written in Matlab

Changing the design variable update strategy (line 86) in
the optimal search procedure

Gray scale filter A simple non-linear gray-scale filter or
intermediate density filter has been proposed by Groen-
wold and Etman (2009) to further achieve black-and-white
topologies. The implementation of the gray scale filter is by
changing the OC update scheme as the following

xnew
i =

⎧
⎨

⎩

max(0, xi −m), ifxiB
η
i � max(0, xi −m)

min(1, xi +m), ifxiB
η
i � min(1, xi −m)

(xiB
η
i)

q, otherwise

(52)

The standard OC updating method is a special case of
(52) with q = 1. A typical value of q for the SIMP-based
topology optimization is q = 2.

The implementation of the gray scale filter to the code
can be done as follows:

Adding one input variable q to the program (line 2)

Change the OC updating method (line 85) to

The factor q should be increased gradually by adding one
line after line 68

Table 3 Time usage of finite element analysis time for different
solvers

Mesh size Direct solver Iterative solver

30 × 10 × 2 0.018 sec 0.129 sec

60 × 20 × 4 0.325 sec 0.751 sec

150 × 50 × 10 74.474 sec 22.445 sec

Figure 8 demonstrates the optimized beams applying dif-
ferent filtering techniques. As can be seen from final results,
both sensitivity filter, density filter and gray scale filter sup-
press checkerboard patterns. The gray scale filter combines
with the sensitivity filter provides the most black-and-white
solution.

6.1.5 Iterative solver

If the finite element mesh size becomes large, the tra-
ditional direct solver (line 72) used to address the finite
element analysis is suffered by longer solving time and
some other issues. However, iterative solver (Hestenes and
Stiefel 1952; Augarde et al. 2006) can solve large-scale
problems efficiently. To this end, line 72 is replaced by
a built-in MATLAB function pcg, called preconditioned
conjugate gradients method, as shown in the following

Direct solver is a special case by setting the precondi-
tioner (line 72c) to

Table 3 gives the comparison of two different finite ele-
ment analysis solvers. As shown in the table, a speed up
factor of 30.81 has been measured when solving large scale
problem. Hence, the iterative solver is more suitable for
large-scale problems, and vice versa.

Some examples include a cantilever beam, the
Messerchimitt-Bölkow-Blohm (MBB) beam and L-shape
problems (Table 4) are solved by using iterative solver

Fig. 8 Topology optimized design used a mesh with 30 × 10 × 2 ele-
ments. Left optimized design using density filter, middle left optimized
design using density filter, middle right optimized design using density

filter and gray scale filter, and right optimized design using sensitivity
filter and gray scale filter

K. Liu and A. Tovar

Table 4 Three-dimensional
examples: Cantilever, MBB,
and L-shape problem. Left:
Initial design domains, right:
topology optimized results

and applying gray scale filter. The underlined triangle
represents a three-dimensional planar joint.

6.1.6 Continuation strategy

Convexity is a very preferable property since every local
minima is also the global minima, and what the pro-
gram is solving for is the global minima. Unfortunately,
the use of SIMP method to achieve binary solution will
destroy the convexity of the optimization problem. For such
problems, it is possible that for different starting points
the program converges to totally different local minima.
In order to penalize intermediate densities and mitigate
the premature convergence to one of the multiple local
minima when solving the non-convex problem, one could

perform a continuation step. As previously presented by
Groenwold and Etman (2010), the continuation step is given
as

pk =
{

1 k � 20,
min{pmax, 1.02pk−1} k > 20,

(53)

where k is the iteration number, and pmax is the maximum
penalization power.

Though this methodology is not proven to converge to
the global optimum, it regularizes the algorithm and allows
the comparison of different optimization strategies.

Implementing the continuation strategy is done by adding
a single line after line 68:

An efficient 3D topology optimization code written in Matlab

6.2 Compliant mechanism synthesis

A compliant mechanism problem involves loading cases:
input loading case and dummy loading case. The code
also needs to implement a new objective function and
its corresponding sensitivity analysis. To demonstrate this
implementation, let us consider a three-dimensional force
inverter problem as shown in Fig. 9. With an input load
defined in the positive direction, the design goal is to max-
imize the negative horizontal output displacement. Both
the top face and the side force are imposed with sym-
metric constraints; i.e., nodes can only move within the
plane.

The new loading conditions as well as input and output
points are defined as follows:

and the boundary conditions are defined as below:

The external springs with stiffness 0.1 are added at input
and output points after line 71.

The expressions of the objective function (31) and sensi-
tivity (32) are modified in lines 74-76.

x

y
z

In

Out
Top face
constrained
for symmetric

Side face
constrained
for symmetric

Fig. 9 Design domain of 3D force inverter problem

The convergence criteria for the bi-sectioning algorithm
(lines 82-83) is improved by the following lines:

To improve the convergence stability, the damping factor
of OC-method changes from 0.5 to 0.3 and also takes the
positive sensitivities into account, then line 85 is changed to:

The final design shown in Fig. 10 is promoted by the line
in the MATLAB:

6.3 Heat conduction

The implementation of heat conduction problems is not
more complex than the one for compliant mechanism syn-
thesis since the number of DOF per node is one rather

Fig. 10 Topology optimized force inverter

K. Liu and A. Tovar

than three. Following the implementation of heat conduc-
tion problems in two dimensions (Bendsøe and Sigmund
2003), the implementation for three dimension problems is
suggested in the following steps.

First, the elastic material properties (lines 8-10) are
changed to the thermal conductivities of materials

Furthermore, the boundary conditions for the heat condi-
tion problem, i.e., a rectangular plate with a heat sink on the
middle of top face and all nodes are given a thermal load as
shown in Fig. 11, are changed corresponding (lines 10-18).

Also, since there is only one DOF per node in heat
condition problems, some variables need to change corre-
spondingly, such as ndof, edofMat.

Change the total number of DOFs and the force vector in
lines 21–22

The element conductivity matrix is called in line 25 by

and it is defined in lines 99–145

Sink

x

y

z

Fig. 11 Initial design domain of heat conduction problem

Fig. 12 Resulting topology of heat conduction problem

The finite element connectivity matrix edofMat is
changed in lines 30–35

The global conductivity matrix is assembled in a different
way, hence line 70 need to change as

The evulation of the objective function and analysis of
the sensitivity are given in lines 75–76

The optimized topology is derived as shown in Fig. 12 by
promoting the following line in the MATLAB:

7 Conclusions

This paper presents MATLAB the analytical elements
and the numerical implementation of an academic three-
dimensional structural topology optimization algorithm
referred to as top3d. In this topology optimization algo-
rithm, the problem formulation follows a density-based

An efficient 3D topology optimization code written in Matlab

approach with a modified SIMP interpolation for physi-
cal densities. The finite element formulation makes use
of eight-node hexahedral elements for which a closed-
form expression of the element stiffness matrix is derived
and numerically implemented. The hexahedral finite ele-
ments are used to uniformly discretize a prismatic design
domain and solve three related topology optimization
problems: minimum compliance, compliant mechanism,
and heat conduction problems. For each problem, this
paper includes the analytical derivation of the sensitiv-
ity coefficients used by three gradient-based optimiza-
tion algorithms: SQP, MMA, and OC, which is imple-
mented by default. For the implementation of SQP, this
paper derives an analytic expression for the second order
derivative.

The use of top3d is demonstrated through several
numerical examples. These examples include problems with
a variety of boundary conditions, multiple load cases, active
and passive elements, filters, and continuation strategies
to mitigate convergence to a local minimum. The archi-
tecture of the code allows the user to map node coor-
dinates of node degrees-of-freedom boundary conditions.
In addition, the paper provides a strategy to handle large
models with the use of an iterative solver. For large-
scale finite-element models, the iterative solver is about
30 times faster than the traditional direct solver. While
this implementation is limited to linear topology opti-
mization problems with a linear constraint, it provides a
clear perspective of the analytical and numerical effort
involved in addressing three-dimensional structural topol-
ogy optimization problems. Finally, additional academic
resources such the use of MMA and SQP are available at
http://top3dapp.com.

Appendix A: Symbolic expression of k0

This appendix presents the analytical results of the element
stiffness matrix k0 as discussed in Section 3. This sym-
bolic expression of k0 is also been used by the program
subroutine lk H8.

Recall that, for an eight-node hexahedral element, the
strain-displacement matrix B is defined by

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂n1(ξe)
∂ξ1

0 0 · · · ∂nq(ξe)

∂ξ1
0 0

0 ∂n1(ξe)
∂ξ2

0 · · · 0 ∂nq(ξe)

∂ξ2

0 0 ∂n1(ξe)
∂ξ3

· · · 0 0
∂nq(ξe)

∂ξ3

∂n1(ξe)
∂ξ2

∂n1(ξe)
∂ξ1

0 · · · ∂nq(ξe)

∂ξ2

∂nq(ξe)

∂ξ1
0

0 ∂n1(ξe)
∂ξ3

∂n1(ξe)
∂ξ2

· · · 0
∂nq(ξe)

∂ξ3

∂nq(ξe)

∂ξ2

∂n1(ξe)
∂ξ3

0 ∂n1(ξe)
∂ξ1

· · · ∂nq(ξe)

∂ξ3
0 ∂nq(ξe)

∂ξ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

for e = 1, . . . , 3 and q = 1, . . . , 8. The corresponding
shape functions nq in a natural coordinate systems ξe are
defined by

nq(ξe) = 1

8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ξ1)(1 − ξ2)(1 − ξ3)

(1 + ξ1)(1 − ξ2)(1 − ξ3)

(1 + ξ1)(1 + ξ2)(1 − ξ3)

(1 − ξ1)(1 + ξ2)(1 − ξ3)

(1 − ξ1)(1 − ξ2)(1 + ξ3)

(1 + ξ1)(1 − ξ2)(1 + ξ3)

(1 + ξ1)(1 + ξ2)(1 + ξ3)

(1 − ξ1)(1 + ξ2)(1 + ξ3)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Substituting values to (11), the 24 × 24 element stiffness
matrix k0

i for an eight-node hexahedral element can be
expressed as

k0
i =

1

(ν + 1)(1 − 2ν)

⎡

⎢
⎢
⎣

k1 k2 k3 k4

kT
2 k5 k6 kT

4
kT

3 k6 kT
5 kT

2
k4 k3 k2 kT

1

⎤

⎥
⎥
⎦ ,

where

k1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1 k2 k2 k3 k5 k5

k2 k1 k2 k4 k6 k7

k2 k2 k1 k4 k7 k6

k3 k4 k4 k1 k8 k8

k5 k6 k7 k8 k1 k2

k5 k7 k6 k8 k2 k1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

k2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k9 k8 k12 k6 k4 k7

k8 k9 k12 k5 k3 k5

k10 k10 k13 k7 k4 k6

k6 k5 k11 k9 k2 k10

k4 k3 k5 k2 k9 k12

k11 k4 k6 k12 k10 k13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

k3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k6 k7 k4 k9 k12 k8

k7 k6 k4 k10 k13 k10

k5 k5 k3 k8 k12 k9

k9 k10 k2 k6 k11 k5

k12 k13 k10 k11 k6 k4

k2 k12 k9 k4 k5 k3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

k4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k14 k11 k11 k13 k10 k10

k11 k14 k11 k12 k9 k8

k11 k11 k14 k12 k8 k9

k13 k12 k12 k14 k7 k7

k10 k9 k8 k7 k14 k11

k10 k8 k9 k7 k11 k14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

k5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1 k2 k8 k3 k5 k4

k2 k1 k8 k4 k6 k11

k8 k8 k1 k5 k11 k6

k3 k4 k5 k1 k8 k2

k5 k6 k11 k8 k1 k8

k4 k11 k6 k2 k8 k1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

http://top3dapp.com

K. Liu and A. Tovar

k6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k14 k11 k7 k13 k10 k12

k11 k14 k7 k12 k9 k2

k7 k7 k14 k10 k2 k9

k13 k12 k10 k14 k7 k11

k10 k9 k2 k7 k14 k7

k12 k2 k9 k11 k7 k14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

k1 = −(6ν − 4)/9,

k2 = 1/12,

k3 = −1/9,

k4 = −(4ν − 1)/12,

k5 = (4ν − 1)/12,

k6 = 1/18,

k7 = 1/24,

k8 = −1/12,

k9 = (6ν − 5)/36,

k10 = −(4ν − 1)/24,

k11 = −1/24,

k12 = (4ν − 1)/24,

k13 = (3ν − 1)/18,

k14 = (3ν − 2)/18.

As can be seen from above, the 64 × 64 entries in the
element stiffness matrix can be represented by fourteen
components (but not independent!).

Appendix B: Derivation of the Hessian Matrix

In this appendix, we will discuss the derivation of the second
order derivative of the objective function. Structure compli-
ance will be used as the objective function, the expression
for other objective functions can be derived similarly.

Recall that the first order derivative of the compliance is
given by

∂c

∂ x̃i
= −ui

T
(
∂ki

∂ x̃i

)

ui ,

where by applying the modified SIMP method (6), we have

∂ki

∂ x̃i
= px̃p−1

i (E0 − Emin)k0
i . (B1)

Note that for brevity of notation, we omitted the depen-
dence on x̃ in this appendix.

A second differentiation of the compliance yields

∂2c

∂ x̃i ∂ x̃j
= ∂

∂ x̃j

[

−ui
T ∂ki

∂ x̃i
ui

]

= − ∂ui
T

∂ x̃j

(
∂ki

∂ x̃i

)

ui − ui
T
(

∂ki

∂ x̃i ∂ x̃j

)

ui

− ui
T
(
∂ki

∂ x̃i

)
∂ui

∂ x̃j
(B2)

From (B1), the middle term of (B2) goes to zero. In order
to get the expression for ∂ui/∂ x̃j in the first and third terms,
let us rewriting (16) as

kiui = fi .

Now if we differentiate both sides with respect to x̃j , we
get
∂ki

∂ x̃j
ui + ki

∂ui

∂ x̃j
= 0,

which yields
∂ui

∂ x̃j
= −k−1

i

(
∂ki

∂ x̃j

)

ui . (B3)

Substitute (B3) into (B1), we have

∂2c

∂ x̃i ∂ x̃j
= −

[

−k−1
i

(
∂ki

∂ x̃j

)

ui

]T
∂ki

∂ x̃i
ui − uT

i

∂ki

∂ x̃i

[

−k−1
i

(
∂ki

∂ x̃j

)

ui

]

,

= 2uT
i

(
∂ki

∂ x̃j

)

k−1
i

(
∂ki

∂ x̃i

)

ui ,

where the last equality holds since

uT
i

(
∂ki

∂ x̃j

)

k−1
i

(
∂ki

∂ x̃i

)

	ui

=
{[

uT
i

(
∂ki

∂ x̃j

)

k−1
i

] [(
∂ki

∂ x̃i

)

ui

]}T

=
[(

∂ki

∂ x̃i

)

ui

]T [

uT
i

(
∂ki

∂ x̃j

)

k−1
i

]T

= uT
i

(
∂ki

∂ x̃i

)

k−1
i

(
∂ki

∂ x̃j

)

ui . (B4)

As discussed earlier, when i �= j , ∂ki /∂ x̃j = 0. When i = j ,
subsituting (B1), (10) and (6) into (B4), we have

∂2c

∂ x̃2
i

= 2 uT
i

[
px̃p−1

i (E0 − Emin)k0
i

]
[Emin+

x̃pi (E0 − Emin)k0
i

]−1 [
px̃p−1

i (E0 − Emin)k0
i

]
ui

= 2
[
px̃p−1

i (E0 − Emin)
]2 [

Emin + x̃pi (E0 − Emin)
]−1

uT
i k0

i ui .

Therefore, the Hessian of the structural compliance is
given by:

∂2c

∂ x̃i ∂ x̃j
=

⎧
⎪⎨

⎪⎩

0, i �= j,

2
[
px̃p−1

i (E0 − Emin)
]2 [

Emin + x̃pi (E0 − Emin)
]−1 	uT

i k0
i ui , i = j.

An efficient 3D topology optimization code written in Matlab

Appendix C: MATLAB Program top3d

K. Liu and A. Tovar

An efficient 3D topology optimization code written in Matlab

References

Aage N, Nobel-Jørgensen M, Andreasen CS, Sigmund O (2013)
Interactive topology optimization on hand-held devices. Struct
Multidiscip Optim 47(1):1–6

Allaire G (2001) Shape optimization by the homogenization method.
Springer, New York

Allaire G, Kohn R (1993) Optimal design for minimum weight and
compliance in plane-stress using extremal microstructures. Eur J
Mech 12(6):839–878

Allaire G, Pantz O (2006) Structural optimization with freefem++.
Struct Multidiscip Optim 32(3):173–181

Allaire G, Belhachmi Z, Jouve F (1996) The homogenization method
for topology and shape optimization. single and multiple loads
case. Eur J Finite Elem 5:649–672

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194(1):363–393

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O
(2011) Efficient topology optimization in matlab using 88 lines of
code. Struct Multidiscip Optim 43(1):1–16

Augarde C, Ramage A, Staudacher J (2006) An element-based dis-
placement preconditioner for linear elasticity problems. Comput
Struct 84(31–32):2306–2315

Bendsøe MP (1989) Optimal shape design as a material distribution
problem. Struct Multidiscip Optim 1(4):193–202

Bendsøe MP (1995) Optimization of structural topology shape and
material. Springer, New York

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in
structural design using a homogenization method. Comput Meth-
ods Appl Mech Eng 71(2):197–224

K. Liu and A. Tovar

Bendsøe MP, Sigmund O (2003) Topology optimization: theory,
method and applications. Springer

Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear
elastic structures and compliant mechanisms. Comput Methods
Appl Mech Eng 190(26–27):3443–3459

Challis VJ (2010) A discrete level-set topology optimization code
written in matlab. Struct Multidiscip Optim 41(3):453–464

Christensen PW, Klarbring A (2009) An introduction to structural
optimization. Springer

Duysinx P (1997) Layout optimization: A mathematical program-
ming approach, DCAMM report. Technical report, Danish Center
of Applied Mathematics and Mechanics, Technical University of
Denmark, DK-2800 Lyngby

Fleury C (1989) CONLIN: an efficient dual optimizer based on convex
approximation concepts. Struct Optim 1(2):81–89

Groenwold AA, Etman LFP (2009) A simple heuristic for gray-scale
suppression in optimality criterion-based topology optimization.
Struct Multidiscip Optim 39(2):217–225

Groenwold AA, Etman LFP (2010) A quadratic approximation for
structural topology optimization. Int J Numer Methods Eng
82(4):505–524

Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design vari-
ables and projection functions. Int J Numer Methods Eng 61:238–
254

Guest JK, Asadpoure A, Ha SH (2011) Elimiating beta-continuation
from heaviside projection and density filter algorithms. Struct
Multidiscip Optim 44:443–453

Haber R, Jog C (1996) A new approach to variable-topology shape
design using a constraint on perimeter. Struct Optim 11(1):1–12

Hassani B, Hinton E (1998) Homogenization and structural topology
optimization: theory, practice and software. Springer

Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for
solving linear systems. J Res Natl Bur Stand 49(6)

Hunter W (2009) Predominantly solid-void three-dimensional topol-
ogy optimisation using open source software. Master’s thesis,
University of Stellenbosch

Jog C (2002) Topology design of structures using a dual algorithm
and a constraint on the perimeter. Int J Numer Methods Eng
54(7):1007–1019

Kohn R, Strang G (1986a) Optimal design and relaxation of variational
problems (part I). Commun Pure Applied Math 39(1):113–137

Kohn R, Strang G (1986b) Optimal design and relaxation of variational
problems (part II). Commun Pure Appl Math 39(2):139–182

Kohn R, Strang G (1986c) Optimal design and relaxation of variational
problems (part III). Commun Pure Appl Math 39(3):353–377

Liu Z, Korvink JG, Huang I (2005) Structure topology optimization:
fully coupled level set method via FEMLAB. Struct Multidiscipl
Optim 6(29):407–417

Mlejnek H (1992) Some aspects of the genesis of structures. Struct
Optim 5(1–2):64–69

Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer
Schmit LA (1960) Structural design by systematic synthesis. In: 2nd

ASCE conference of electrical compounds. Pittsburgh, pp 139–
149

Sigmund O (1994) Design of material structures using topology
optimization, PhD thesis, Technical University of Denmark

Sigmund O (1997) On the design of compliant mechanisms using
topology optimization. Mech Struct Mach 25(4):495–526

Sigmund O (2001) A 99 line topology optimization code written in
matlab. Struct Multidiscip Optim 21(2):120–127

Sigmund O (2007) Morphology-based black and white filters for
topology optimization. Struct Multidiscip Optim 33:401–424

Sigmund O, Peterson J (1998) Numerical instabilities in topology
optimization: a survey on procedures dealing with checkerboards,
mesh-dependencies and local minima. Struct Optim 16:68–75

Sokół T (2011) A 99 line code for discretized michell truss optimiza-
tion written in mathematica. Struct Multidiscip Optim 43(2):181–
190

Suresh K (2010) A 199-line matlab code for pareto-optimal tracing in
topology optimization. Struct Multidiscip Optim 42:665–679

Svanberg K (1987) The method of moving asymptotes-a new method
for structural optimzation. Int J Numer Methods Eng 24:359–
373

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) Polymesher:
a general-purpose mesh generator for polygonal elements written
in matlab. Struct Multidiscip Optim 45:309–328

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) Polytop: a
matlab implementation of a general topology optimization frame-
work using unstructured polygonal finite element meshes. Struct
Multidiscip Optim 45:329–357

Wang MY, Chen S, Xia Q (2004) Structural topology optimization
with the level set method. http://www2.acae.cuhk.edu.hk/cmdl/
download.htm

Wilson RB (1963) A simplicial method for convex programming, PhD
thesis, Harvard University

Zhou M, Rozvany G (1991) The COC algorithm, part II: topological,
geometrical and generalized shape optimization. Comp Meth Appl
Mech Eng 89:309–336

Zhou S, Wang MY (2005) 3d structural topology optimization with the
simp method. http://www2.acae.cuhk.edu.hk/cmdl/download.htm

http://www2.acae.cuhk.edu.hk/cmdl/download.htm
http://www2.acae.cuhk.edu.hk/cmdl/download.htm
http://www2.acae.cuhk.edu.hk/cmdl/download.htm

	An efficient 3D topology optimization code written in Matlab
	Abstract
	Introduction
	Theoretical background
	Problem definition and ill-posedness
	Homogenization method
	Density-based approach

	Finite element analysis
	Equilibrium equation
	Numerical implementation

	Optimization problem formulation
	Minimum compliance
	Compliant mechanism synthesis
	Heat conduction

	Optimization algorithms
	Sequential quadratic programming
	Method of moving asymptotes
	Optimality criteria

	Numerical examples
	Minimum compliance
	Boundary conditions
	Multiple load cases
	Active and passive elements
	Alternative filters
	Sensitivity filter
	Gray scale filter

	Iterative solver
	Continuation strategy

	Compliant mechanism synthesis
	Heat conduction

	Conclusions
	Appendix A: Symbolic expression of k0
	Appendix B: Derivation of the Hessian Matrix
	Appendix C: MATLAB Program top3d
	References

