#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int main(int argc, char * argv[]) { typedef Eigen::SparseMatrix SparseMat; srand(57); //Read our mesh Eigen::MatrixXd V; Eigen::MatrixXi F; if(!igl::read_triangle_mesh( argc>1?argv[1]: TUTORIAL_SHARED_PATH "/beetle.off",V,F)) { std::cout << "Failed to load mesh." << std::endl; } //Constructing an exact function to smooth igl::HeatGeodesicsData hgData; igl::heat_geodesics_precompute(V, F, hgData); Eigen::VectorXd heatDist; Eigen::VectorXi gamma(1); gamma << 1947; //1631; igl::heat_geodesics_solve(hgData, gamma, heatDist); Eigen::VectorXd zexact = 0.1*(heatDist.array() + (-heatDist.maxCoeff())).pow(2) + 3*V.block(0,1,V.rows(),1).array().cos(); //Make the exact function noisy const double s = 0.1*(zexact.maxCoeff() - zexact.minCoeff()); Eigen::VectorXd znoisy = zexact + s*Eigen::VectorXd::Random(zexact.size()); //Constructing the squared Laplacian and squared Hessian energy SparseMat L, M; igl::cotmatrix(V, F, L); igl::massmatrix(V, F, igl::MASSMATRIX_TYPE_BARYCENTRIC, M); Eigen::SimplicialLDLT solver(M); SparseMat MinvL = solver.solve(L); SparseMat QL = L.transpose()*MinvL; SparseMat QH; igl::hessian_energy(V, F, QH); SparseMat QcH; igl::curved_hessian_energy(V, F, QcH); //Solve to find Laplacian-smoothed Hessian-smoothed, and // curved-Hessian-smoothed solutions const double al = 3e-7; Eigen::SimplicialLDLT lapSolver(al*QL + (1.-al)*M); Eigen::VectorXd zl = lapSolver.solve(al*M*znoisy); const double ah = 2e-7; Eigen::SimplicialLDLT hessSolver(ah*QH + (1.-ah)*M); Eigen::VectorXd zh = hessSolver.solve(ah*M*znoisy); const double ach = 3e-7; Eigen::SimplicialLDLT curvedHessSolver(al*QcH + (1.-ach)*M); Eigen::VectorXd zch = curvedHessSolver.solve(ach*M*znoisy); //Viewer that shows all functions: zexact, znoisy, zl, zh igl::opengl::glfw::Viewer viewer; viewer.data().set_mesh(V,F); viewer.data().show_lines = false; viewer.callback_key_down = [&](igl::opengl::glfw::Viewer & viewer, unsigned char key, int mod)->bool { //Graduate result to show isolines, then compute color matrix const Eigen::VectorXd* z; switch(key) { case '1': z = &zexact; break; case '2': z = &znoisy; break; case '3': z = &zl; break; case '4': z = &zh; break; case '5': z = &zch; break; default: return false; } viewer.data().set_data(*z); return true; }; std::cout << R"(Smoothing a noisy function. Usage: 1 Show original function 2 Show noisy function 3 Biharmonic smoothing (zero Neumann boundary) 4 Biharmonic smoothing (natural planar Hessian boundary) 5 Biharmonic smoothing (natural curved Hessian boundary) )"; Eigen::MatrixXd CM; igl::parula(Eigen::VectorXd::LinSpaced(21,0,1).eval(),false,CM); igl::isolines_map(Eigen::MatrixXd(CM),CM); viewer.data().set_colormap(CM); viewer.data().set_data(znoisy); viewer.launch(); //Constructing a step function to smooth Eigen::VectorXd zstep = Eigen::VectorXd::Zero(V.rows()); for(int i=0; i0.31 ? 2. : 0); } //Smooth that function const double sl = 2e-5; Eigen::SimplicialLDLT stepLapSolver(sl*QL + (1.-sl)*M); Eigen::VectorXd stepzl = stepLapSolver.solve(al*M*zstep); const double sh = 6e-6; Eigen::SimplicialLDLT stepHessSolver(sh*QH + (1.-sh)*M); Eigen::VectorXd stepzh = stepHessSolver.solve(ah*M*zstep); const double sch = 2e-5; Eigen::SimplicialLDLT stepCurvedHessSolver(sl*QcH + (1.-sch)*M); Eigen::VectorXd stepzch = stepCurvedHessSolver.solve(ach*M*zstep); //Display functions igl::opengl::glfw::Viewer viewer2; viewer2.data().set_mesh(V,F); viewer2.data().show_lines = false; viewer2.callback_key_down = [&](igl::opengl::glfw::Viewer & viewer, unsigned char key, int mod)->bool { //Graduate result to show isolines, then compute color matrix const Eigen::VectorXd* z; switch(key) { case '1': z = &zstep; break; case '2': z = &stepzl; break; case '3': z = &stepzh; break; case '4': z = &stepzch; break; default: return false; } viewer.data().set_data(*z); return true; }; std::cout << R"(Smoothing a step function. Usage: 1 Show step function 2 Biharmonic smoothing (zero Neumann boundary) 3 Biharmonic smoothing (natural planar Hessian boundary) 4 Biharmonic smoothing (natural curved Hessian boundary) )"; viewer2.data().set_colormap(CM); viewer2.data().set_data(zstep); viewer2.launch(); return 0; }