Browse Source

g This is a combination of 2 commits.

fixed build
Amsterwolf 12 months ago
parent
commit
f19320ab96
  1. 17
      examples/clamped_model_writer/CMakeLists.txt
  2. 17
      examples/defined_model_writer/CMakeLists.txt
  3. 17
      examples/top_summary/CMakeLists.txt
  4. 447
      examples/top_summary/main.cpp

17
examples/clamped_model_writer/CMakeLists.txt

@ -1,3 +1,16 @@
set(SUB_PROJECT_NAME clamped_model_writer)
add_executable(${SUB_PROJECT_NAME} main.cpp)
target_link_libraries(${SUB_PROJECT_NAME} ${PROJECT_NAME}_lib)
if (ENABLE_AMGCL_CUDA)
# cp main.cpp to main.cu
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/main.cpp
${CMAKE_CURRENT_SOURCE_DIR}/main.cu
COPYONLY
)
add_executable(${SUB_PROJECT_NAME} main.cu)
# # OpenMP Required!
target_compile_options(${SUB_PROJECT_NAME} PRIVATE -Xcompiler -fopenmp)
target_link_libraries(${SUB_PROJECT_NAME} PUBLIC ${PROJECT_NAME}_cuda_lib)
else ()
add_executable(${SUB_PROJECT_NAME} main.cpp)
target_link_libraries(${SUB_PROJECT_NAME} ${PROJECT_NAME}_lib)
endif ()

17
examples/defined_model_writer/CMakeLists.txt

@ -1,3 +1,16 @@
set(SUB_PROJECT_NAME defined_model_writer)
add_executable(${SUB_PROJECT_NAME} main.cpp)
target_link_libraries(${SUB_PROJECT_NAME} ${PROJECT_NAME}_lib)
if (ENABLE_AMGCL_CUDA)
# cp main.cpp to main.cu
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/main.cpp
${CMAKE_CURRENT_SOURCE_DIR}/main.cu
COPYONLY
)
add_executable(${SUB_PROJECT_NAME} main.cu)
# # OpenMP Required!
target_compile_options(${SUB_PROJECT_NAME} PRIVATE -Xcompiler -fopenmp)
target_link_libraries(${SUB_PROJECT_NAME} PUBLIC ${PROJECT_NAME}_cuda_lib)
else ()
add_executable(${SUB_PROJECT_NAME} main.cpp)
target_link_libraries(${SUB_PROJECT_NAME} ${PROJECT_NAME}_lib)
endif ()

17
examples/top_summary/CMakeLists.txt

@ -1,17 +0,0 @@
set(SUB_PROJECT_NAME top_summary)
if (ENABLE_AMGCL_CUDA)
# cp main.cpp to main.cu
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/main.cpp
${CMAKE_CURRENT_SOURCE_DIR}/main.cu
COPYONLY
)
add_executable(${SUB_PROJECT_NAME} main.cu)
# # OpenMP Required!
target_compile_options(${SUB_PROJECT_NAME} PRIVATE -Xcompiler -fopenmp)
target_link_libraries(${SUB_PROJECT_NAME} PUBLIC ${PROJECT_NAME}_cuda_lib)
else ()
add_executable(${SUB_PROJECT_NAME} main.cpp)
target_link_libraries(${SUB_PROJECT_NAME} ${PROJECT_NAME}_lib)
endif ()
#target_compile_definitions(${SUB_PROJECT_NAME} PUBLIC CONFIG_FILE= "${CMAKE_CURRENT_SOURCE_DIR}/config.json")

447
examples/top_summary/main.cpp

@ -1,447 +0,0 @@
//
// Created by cflin on 6/9/23.
//
#include <memory>
#include <nlohmann/json.hpp>
#include "Boundary.h"
#include "Mesh/HeatMesh.h"
#include "Util.h"
#include "ThermoelasticTop3d.h"
#include "FEA/MechanicalLinearFEA.h"
#include "FEA/ThermalLinearFEA.h"
#include "TensorWrapper.h"
int main() {
using namespace da::sha;
using namespace da::sha::top;
using top::fs_path;
using std::string;
top::fs_path output_dir(OUTPUT_DIR);
top::fs_path config_file(
CMAKE_SOURCE_DIR "/examples/top-thermoelastic-compare-3d/config_Lshape.json");
top::fs_path assets_dir(ASSETS_DIR);
spdlog::info("Algo read from '{}'", config_file.string());
spdlog::info("Algo output to '{}'", output_dir.string());
spdlog::info("assets dir: '{}'", assets_dir.string());
// read json
std::ifstream f(config_file.c_str());
if (!f) {
spdlog::critical("f open fail!");
exit(-7);
}
nlohmann::json j_config = nlohmann::json::parse(f);
// read title
std::string ex_name = j_config["TopologyOptimizationExample"];
spdlog::critical("TopologyOptimizationExample: {}", ex_name);
// set topology parameters
auto para = std::make_shared<top::CtrlPara>();
para->max_loop = j_config["topology"]["max_loop"];
para->volfrac = j_config["topology"]["volfrac"];
para->r_min = j_config["topology"]["r_min"];
para->penal = j_config["topology"]["penal"];
para->T_ref = j_config["topology"]["T_ref"];
para->T_limit = j_config["topology"]["T_limit"];
para->R_E = j_config["topology"]["R_E"];
para->R_lambda = j_config["topology"]["R_lambda"];
para->R_beta = j_config["topology"]["R_beta"];
// set material parameters
double E = j_config["material"]["E"];
double Poisson_ratio = j_config["material"]["poisson_ratio"];
double thermal_conductivity = j_config["material"]["thermal_conductivity"];
double thermal_expansion_coefficient = j_config["material"]["thermal_expansion_coefficient"];
auto material = std::make_shared<top::Material>(E, Poisson_ratio,
thermal_conductivity,
thermal_expansion_coefficient);
// set fea
auto sp_mech_fea = std::make_shared<top::MechanicalLinearFEA>(
material);// for mechanical
auto sp_thermal_fea = std::make_shared<top::ThermalLinearFEA>(
material);// for thermal
// set mesh(regular)
int len_x = j_config["model"]["regular_model"]["lx"];
int len_y = j_config["model"]["regular_model"]["ly"];
int len_z = j_config["model"]["regular_model"]["lz"];
// NOTE: USER DEFINE GRID HERE!!!
std::shared_ptr<top::Mesh> sp_mech_mesh;
std::shared_ptr<top::HeatMesh> sp_thermal_mesh;
if (ex_name == "Lshape") {
// L-shape condition
spdlog::critical("Using User Defined density!");
top::Tensor3d L_shape_model(len_x, len_y, len_z);
L_shape_model.setConstant(1);
// set the initial voxel model
for (int k = 0; k < len_z; ++k) {
for (int j = 0; j < len_y; ++j) {
for (int i = 0; i < len_x; ++i) {
if (j > len_y * 0.6 & k > len_z * 0.5) {
L_shape_model(i, j, k) = 0;
}
}
}
}
auto &model = L_shape_model;
sp_mech_mesh = std::make_shared<top::Mesh>(len_x, len_y, len_z, model);
sp_thermal_mesh = std::make_shared<top::HeatMesh>(len_x, len_y, len_z,
model);
} else {
sp_mech_mesh = std::make_shared<top::Mesh>(len_x, len_y, len_z);
sp_thermal_mesh = std::make_shared<top::HeatMesh>(len_x, len_y, len_z);
}
// initialize Top3d
auto sp_mech_top3d = std::make_shared<top::Top3d>(para, sp_mech_fea,
sp_mech_mesh);
auto sp_ther_top3d = std::make_shared<top::Top3d>(para, sp_thermal_fea,
sp_thermal_mesh);
// auxiliary class(Boundary) help to get boundary coordinates
// see the comments in Boundary.h for more information
auto AddBoundaryMechanicalCondition = [&j_config](
std::shared_ptr<top::Top3d> sp_mech_top3d,
std::shared_ptr<top::Mesh> sp_mech_mesh) {
top::Boundary mech_bdr(sp_mech_mesh);
{
// add Dirichlet boundary, see the comments in Top3d::AddDBC for more information
assert(j_config.count("mechanical_boundary_condition"));
assert(j_config["mechanical_boundary_condition"].count("DBC"));
assert(j_config["mechanical_boundary_condition"].count("NBC"));
int DBCNum = j_config["mechanical_boundary_condition"]["DBC"].size();
for (int _i = 0; _i < DBCNum; ++_i) {
const auto &DBCI = j_config["mechanical_boundary_condition"]["DBC"][_i];
Eigen::Vector3d minBBox(DBCI["min"][0], DBCI["min"][1],
DBCI["min"][2]);
Eigen::Vector3d maxBBox(DBCI["max"][0], DBCI["max"][1],
DBCI["max"][2]);
Eigen::Vector3i dir(DBCI["dir"][0], DBCI["dir"][1],
DBCI["dir"][2]);
top::Dir t_dir(minBBox, maxBBox, dir);
sp_mech_top3d->AddDBC(
mech_bdr.GetChosenCoordsByRelativeAlignedBox(t_dir.box),
t_dir.dir);
}
// add Neumann boundary, see the comments in Top3d::AddNBC for more information
int NBCNum = j_config["mechanical_boundary_condition"]["NBC"].size();
for (int _i = 0; _i < NBCNum; ++_i) {
const auto &NBCI = j_config["mechanical_boundary_condition"]["NBC"][_i];
Eigen::Vector3d minBBox(NBCI["min"][0], NBCI["min"][1],
NBCI["min"][2]);
Eigen::Vector3d maxBBox(NBCI["max"][0], NBCI["max"][1],
NBCI["max"][2]);
Eigen::Vector3d val(NBCI["val"][0], NBCI["val"][1],
NBCI["val"][2]);
top::Neu t_neu(minBBox, maxBBox, val);
Eigen::MatrixXi coords = mech_bdr.GetChosenCoordsByRelativeAlignedBox(
t_neu.box);
sp_mech_top3d->AddNBC(coords, t_neu.val / coords.rows());
}
}
};
auto AddBoundaryThermalCondition = [&j_config](
std::shared_ptr<top::Top3d> sp_ther_top3d,
std::shared_ptr<top::HeatMesh> sp_ther_mesh) {
top::Boundary thermal_bdr(sp_ther_mesh);
{
// add Dirichlet boundary, see the comments in Top3d::AddDBC for more information
assert(j_config.count("thermal_boundary_condition"));
assert(j_config["thermal_boundary_condition"].count("DBC"));
assert(j_config["thermal_boundary_condition"].count("NBC"));
int DBCNum = j_config["thermal_boundary_condition"]["DBC"].size();
for (int _i = 0; _i < DBCNum; ++_i) {
const auto &DBCI = j_config["thermal_boundary_condition"]["DBC"][_i];
Eigen::Vector3d minBBox(DBCI["min"][0], DBCI["min"][1],
DBCI["min"][2]);
Eigen::Vector3d maxBBox(DBCI["max"][0], DBCI["max"][1],
DBCI["max"][2]);
top::Dir t_dir(minBBox, maxBBox, Eigen::Vector3i(1, 0, 0));
sp_ther_top3d->AddDBC(
thermal_bdr.GetChosenCoordsByRelativeAlignedBox(
t_dir.box),
t_dir.dir, DBCI["temperature"]);
}
// add Neumann boundary, see the comments in Top3d::AddNBC for more information
int NBCNum = j_config["thermal_boundary_condition"]["NBC"].size();
for (int _i = 0; _i < NBCNum; ++_i) {
const auto &NBCI = j_config["thermal_boundary_condition"]["NBC"][_i];
Eigen::Vector3d minBBox(NBCI["min"][0], NBCI["min"][1],
NBCI["min"][2]);
Eigen::Vector3d maxBBox(NBCI["max"][0], NBCI["max"][1],
NBCI["max"][2]);
Eigen::Vector3d val(NBCI["heat_flux"], 0, 0);
top::Neu t_neu(minBBox, maxBBox, val);
Eigen::MatrixXi coords = thermal_bdr.GetChosenCoordsByRelativeAlignedBox(
t_neu.box);
sp_ther_top3d->AddNBC(coords, t_neu.val / coords.rows());
}
}
};
AddBoundaryMechanicalCondition(sp_mech_top3d, sp_mech_mesh);
AddBoundaryThermalCondition(sp_ther_top3d, sp_thermal_mesh);
// process topology optimization
spdlog::critical("start to mechanical top opt ...");
top::Tensor3d t_me_rho = sp_mech_top3d->TopOptMainLoop();
{
spdlog::critical("extract compliance and volume each iteration ...");
// extract compliance and volume each iteration
fs_path compliance_path =
output_dir / "txt" / ex_name /
(ex_name + "_MeTop" + "_compliance.txt");
WriteStdVector(compliance_path, sp_mech_top3d->v_compliance_);
spdlog::info("write compliance txt to: {}", compliance_path.c_str());
fs_path volume_path =
output_dir / "txt" / ex_name /
(ex_name + "_MeTop" + "_volume.txt");
WriteStdVector(volume_path, sp_mech_top3d->v_volume_);
spdlog::info("write volume txt to: {}", volume_path.c_str());
// extract rho (txt and vtk)
fs_path rho_txt_path =
output_dir / "txt" / ex_name /
(ex_name + "_MeTop" + "_rho.txt");
write_tensor3d(rho_txt_path, t_me_rho, sp_mech_mesh->GetOrigin(),
sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
spdlog::info("write density txt to: {}", rho_txt_path.c_str());
fs_path rho_vtk_path =
output_dir / "vtk" / ex_name /
(ex_name + "_MeTop" + "_rho.vtk");
WriteTensorToVtk(rho_vtk_path, t_me_rho, sp_mech_mesh);
spdlog::info("write density vtk to: {}", rho_vtk_path.c_str());
}
spdlog::critical("start to mechanical thermal top opt ...");
// init thermoelastic top3d
top::ThermoelasticTop3d mech_ther_top3d(sp_mech_top3d, sp_ther_top3d);
top::Tensor3d t_meth_rho = mech_ther_top3d.TopOptMainLoop();
{
spdlog::critical("extract compliance and volume each iteration ...");
// extract compliance and volume each iteration
fs_path compliance_path =
output_dir / "txt" / ex_name /
(ex_name + "_MeThTop" + "_compliance.txt");
WriteStdVector(compliance_path, mech_ther_top3d.v_compliance_);
spdlog::info("write compliance txt to: {}", compliance_path.c_str());
fs_path volume_path =
output_dir / "txt" / ex_name /
(ex_name + "_MeThTop" + "_volume.txt");
WriteStdVector(volume_path, mech_ther_top3d.v_volume_);
spdlog::info("write volume txt to: {}", volume_path.c_str());
// extract rho (txt and vtk)
fs_path rho_txt_path =
output_dir / "txt" / ex_name /
(ex_name + "_MeThTop" + "_rho.txt");
write_tensor3d(rho_txt_path, t_meth_rho, sp_mech_mesh->GetOrigin(),
sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
spdlog::info("write density txt to: {}", rho_txt_path.c_str());
fs_path rho_vtk_path =
output_dir / "vtk" / ex_name /
(ex_name + "_MeThTop" + "_rho.vtk");
WriteTensorToVtk(rho_vtk_path, t_meth_rho, sp_mech_mesh);
spdlog::info("write density vtk to: {}", rho_vtk_path.c_str());
}
// // extract rho (txt and vtk)
// fs_path rho_txt_path = output_dir / "txt" / (ex_name + "_rho.txt");
// write_tensor3d(rho_txt_path, ten_rho, sp_mech_mesh->GetOrigin(),
// sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
// spdlog::info("write density txt to: {}", rho_txt_path.c_str());
//
// fs_path rho_vtk_path = output_dir / "vtk" / (ex_name + "_rho.vtk");
// WriteTensorToVtk(rho_vtk_path, ten_rho, sp_mech_mesh);
// spdlog::info("write density vtk to: {}", rho_vtk_path.c_str());
// // extract temperature(vtk)
// fs_path T_vtk_path = output_dir / "vtk" / (ex_name + "_T.vtk");
// WriteUToVtk(T_vtk_path, ther_top3d.GetTemperature(), sp_thermal_mesh);
// spdlog::info("write temperature vtk to: {}", T_vtk_path.c_str());
//
// // extract displacement(vtk)
// fs_path U_vtk_path = output_dir / "vtk" / (ex_name + "_U.vtk");
// WriteUToVtk(U_vtk_path, ther_top3d.GetNormedDisplacement(), sp_mech_mesh);
// spdlog::info("write displacement norm vtk to: {}", U_vtk_path.c_str());
//
// // extract stress field(txt or vtk)
// auto t_von_stress = ther_top3d.GetVonStress();
// fs_path von_stress_txt_path =
// output_dir / "txt" / (ex_name + "_von_stress.txt");
// write_tensor3d(von_stress_txt_path, t_von_stress, sp_mech_mesh->GetOrigin(),
// sp_mech_mesh->GetOrigin() + sp_mech_mesh->GetLenBox());
// spdlog::info("write von stress txt to: {}", von_stress_txt_path.c_str());
//
// fs_path von_stress_vtk_path =
// output_dir / "vtk" / (ex_name + "_von_stress.vtk");
// WriteTensorToVtk(von_stress_vtk_path, t_von_stress, sp_mech_mesh);
// spdlog::info("write von stress vtk to: {}", von_stress_vtk_path.c_str());
// postprocess--------------------------------------------------------------
auto MechanicalSimulation = [&](const top::Tensor3d &t_rho,
const string &suffix) {
sp_mech_mesh = std::make_shared<top::Mesh>(t_rho.dimension(0),
t_rho.dimension(1),
t_rho.dimension(2), t_rho);
// postprocess: simulation
// MeSim
{
auto sp_mech_top3d_sim = std::make_shared<top::Top3d>(para,
sp_mech_fea,
sp_mech_mesh);
sp_mech_top3d_sim->TopOptMainLoop(true);
// extract displacement(vtk)
fs_path U_vtk_path = output_dir / "vtk" /
(ex_name + "_MeSim" + "_U" + suffix +
".vtk");
WriteUToVtk(U_vtk_path, sp_mech_top3d_sim->GetNormedDisplacement(),
sp_mech_mesh);
spdlog::info("write displacement norm vtk to: {}",
U_vtk_path.c_str());
// extract stress field(txt and vtk)
auto t_von_stress = sp_mech_top3d_sim->GetVonStress();
fs_path von_stress_vtk_path =
output_dir / "vtk" /
(ex_name + "_MeSim" + "_von_stress" + suffix + ".vtk");
WriteNodeToVtk(von_stress_vtk_path, t_von_stress, sp_mech_mesh);
spdlog::info("write von stress vtk to: {}",
von_stress_vtk_path.c_str());
// extract compliance
fs_path compliance_path =
output_dir / "txt" /
(ex_name + "_MeSim" + "_compliance" + suffix + ".txt");
WriteStdVector(compliance_path, mech_ther_top3d.v_compliance_);
spdlog::info("write compliance txt to: {}",
compliance_path.c_str());
}
};
auto MechanicalThermalSimulation = [&output_dir, &ex_name, &para, &sp_mech_fea, &sp_thermal_fea, &AddBoundaryThermalCondition, &AddBoundaryMechanicalCondition](
const top::Tensor3d &t_rho,
const string &suffix) {
auto sp_mech_mesh_sim = std::make_shared<top::Mesh>(t_rho.dimension(0),
t_rho.dimension(1),
t_rho.dimension(2),
t_rho);
auto sp_thermal_mesh_sim = std::make_shared<top::HeatMesh>(
t_rho.dimension(0),
t_rho.dimension(1),
t_rho.dimension(2),
t_rho);
auto sp_mech_top3d_sim = std::make_shared<top::Top3d>(para, sp_mech_fea,
sp_mech_mesh_sim);
auto sp_thermal_top3d_sim = std::make_shared<top::Top3d>(para,
sp_thermal_fea,
sp_thermal_mesh_sim);
AddBoundaryMechanicalCondition(sp_mech_top3d_sim, sp_mech_mesh_sim);
AddBoundaryThermalCondition(sp_thermal_top3d_sim, sp_thermal_mesh_sim);
top::ThermoelasticTop3d ther_top3d_sim(sp_mech_top3d_sim,
sp_thermal_top3d_sim);
ther_top3d_sim.TopOptMainLoop(true);
{
// extract clamped rho (vtk)
fs_path rho_vtk_path = output_dir / "vtk" / ex_name /
(ex_name + suffix + "_rho" +
".vtk");
auto t_temp = t_rho;
t_temp.SetConst(1);
WriteTensorToVtk(rho_vtk_path, t_temp, sp_mech_mesh_sim);
spdlog::info("write clamped density vtk to: {}",
rho_vtk_path.c_str());
// extract temperature (vtk)
fs_path T_vtk_path = output_dir / "vtk" / ex_name /
(ex_name + suffix + "_T" +
".vtk");
WriteNodeToVtk(T_vtk_path, ther_top3d_sim.GetTemperature(),
sp_thermal_mesh_sim);
spdlog::info("write temperature vtk to: {}", T_vtk_path.c_str());
// extract displacement (vtk)
fs_path U_vtk_path = output_dir / "vtk" / ex_name /
(ex_name + suffix + "_U" +
".vtk");
WriteNodeToVtk(U_vtk_path, ther_top3d_sim.GetNormedDisplacement(),
sp_mech_mesh_sim);
spdlog::info("write displacement norm vtk to: {}",
U_vtk_path.c_str());
// extract stress field(txt or vtk)
auto t_von_stress = ther_top3d_sim.GetVonStress();
fs_path von_stress_vtk_path =
output_dir / "vtk" / ex_name /
(ex_name + suffix + "_von_stress" +
".vtk");
WriteNodeToVtk(von_stress_vtk_path, t_von_stress, sp_mech_mesh_sim);
spdlog::info("write von stress vtk to: {}",
von_stress_vtk_path.c_str());
// extract compliance
fs_path compliance_path =
output_dir / "txt" / ex_name /
(ex_name + suffix + "_compliance" + ".txt");
WriteStdVector(compliance_path, ther_top3d_sim.v_compliance_);
spdlog::info("write compliance txt to: {}",
compliance_path.c_str());
}
};
auto ClampAndSimulation = [&](const top::Tensor3d &res_rho,
const std::string &suffix) {
// clamp density to 0 or 1
// set different thresholds to pick a suitable density result
for (double threshold = 0.2;
threshold < 0.5 + 0.0001; threshold += 0.05) {
std::string str_thresh =
"_thresh" + std::to_string((int) (threshold * 100));
top::Tensor3d t_rho = res_rho;
for (int k = 0; k < t_rho.dimension(2); ++k) {
for (int j = 0; j < t_rho.dimension(1); ++j) {
for (int i = 0; i < t_rho.dimension(0); ++i) {
t_rho(i, j, k) = t_rho(i, j, k) >= threshold ? 1 : 0;
}
}
}
try {
// mech ther sim
MechanicalThermalSimulation(t_rho, suffix + str_thresh);
} catch (std::exception &e) {
spdlog::error(e.what() + std::string(" skip") + str_thresh);
}
}
};
{
spdlog::critical("postprocess: mechanical result simulation ...");
// SIM: Mechanical result -> clamped -> MeThSim
ClampAndSimulation(t_me_rho, "_MeSim");
}
{
spdlog::critical(
"postprocess: mechanical thermal result simulation ...");
// SIM: Mechanical thermal result -> clamped -> MeThSim
ClampAndSimulation(t_meth_rho, "_MeThSim");
}
}
Loading…
Cancel
Save