Browse Source

split mainloop

multiple_top
cflin 2 years ago
parent
commit
edfb07742f
  1. 359
      src/ThermoelasticTop3d.cpp
  2. 359
      src/ThermoelasticTop3d.h

359
src/ThermoelasticTop3d.cpp

@ -3,3 +3,362 @@
//
#include "ThermoelasticTop3d.h"
da::sha::top::Tensor3d da::sha::top::ThermoelasticTop3d::TopOptMainLoop() {
auto &sp_mesh_ = sp_mech_top3d_->sp_mesh_;
auto &sp_para_ = sp_mech_top3d_->sp_para_;
Eigen::VectorXd xPhys_col(sp_mesh_->GetNumEles());
xPhys_col.setConstant(sp_para_->volfrac);
bool flg_chosen = false;
Eigen::VectorXi chosen_ele_id;
// Eigen::VectorXi chosen_ele_id(sp_mesh_->GetChosenEleIdx());
// bool flg_chosen = chosen_ele_id.size() != 0;
// if (!flg_chosen) {
// // no part chosen
// xPhys_col.setConstant(sp_para_->volfrac);
// } else {
// // pick chosen part to sim
// xPhys_col = sp_mesh_->GetInitEleRho();
// xPhys_col(chosen_ele_id).setConstant(sp_para_->volfrac);
// }
int loop = 0;
double change = 1.0;
double E0_m = sp_mech_top3d_->sp_fea_->sp_material_->E;
double lambda0 = sp_mech_top3d_->sp_fea_->sp_material_->thermal_conductivity;
double lambda_min = lambda0 * sp_mech_top3d_->sp_para_->E_factor;
double alpha0 = sp_mech_top3d_->sp_fea_->sp_material_->thermal_expansion_coefficient;
// Precompute
Eigen::VectorXd dv(sp_mesh_->GetNumEles());
dv.setOnes();
dv = sp_mech_top3d_->H_ * (dv.array() / sp_mech_top3d_->Hs_.array()).matrix().eval();
Eigen::VectorXd ele_to_write =
Eigen::VectorXd::Zero(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz());
Eigen::VectorXi pixel_idx = sp_mesh_->GetPixelIdx();
// dofs of limited T
struct LimitedDof {
int dof;
int idx_of_load_dof;
int idx_in_ele;
LimitedDof(int dof, int idx_of_load_dof, int idx_in_ele) : dof(dof), idx_of_load_dof(idx_of_load_dof),
idx_in_ele(idx_in_ele) {}
};
std::map<int, std::vector<LimitedDof>> map_ele2Limit;
std::vector<int> v_dof(sp_thermal_top3d_->set_dofs_to_load.begin(),
sp_thermal_top3d_->set_dofs_to_load.end());
{
Eigen::MatrixXi ele2dof_map = sp_thermal_top3d_->sp_mesh_->GetEleId2DofsMap();
// loop ele2dof_map
for (int i = 0; i < ele2dof_map.rows(); ++i) {
for (int j = 0; j < ele2dof_map.cols(); ++j) {
for (int k = 0; k < v_dof.size(); ++k) {
if (ele2dof_map(i, j) == v_dof[k]) {
if (map_ele2Limit.find(i) == map_ele2Limit.end()) {
map_ele2Limit[i] = {LimitedDof(v_dof[k], k, j)};
} else {
map_ele2Limit[i].push_back(LimitedDof(v_dof[k], k, j));
}
}
}
}
}
}
spdlog::info("end Precompute");
#ifdef USE_SUITESPARSE
spdlog::info("using suitesparse solver");
#else
spdlog::warn("using Eigen built-in direct solver!");
#endif
// start iteration
while (change > sp_para_->tol_x * 1 && loop < sp_para_->max_loop) {
++loop;
// filter
xPhys_col = sp_mech_top3d_->H_ * (xPhys_col.array() / sp_mech_top3d_->Hs_.array()).matrix().eval();
auto CalR = [](double rho, double R) {
return rho / (1.0 + R * (1.0 - rho));
};
auto CalR_Vec = [](const Eigen::VectorXd &vec_rho, double R) -> Eigen::VectorXd {
return vec_rho.array() / (1.0 + R * (1.0 - vec_rho.array()));
};
auto CalDRDrho = [](double rho, double R) {
double down = 1 + R * (1 - rho);
return (1 + R) / down * down;
};
auto CalDRDrho_Vec = [](const Eigen::VectorXd &vec_rho, double R) -> Eigen::VectorXd {
auto down = 1 + R * (1 - vec_rho.array());
return (1 + R) / down.pow(2);
};
auto CalE_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return CalR_Vec(vec_rho, sp_para_->R_E) * E0_m;
};
auto CalDEDrho_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return CalDRDrho_Vec(vec_rho, sp_para_->R_E) * E0_m;
};
auto CalLambda_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return lambda_min + CalR_Vec(vec_rho, sp_para_->R_lambda).array() * (lambda0 - lambda_min);
};
auto CalDlambdaDrho = [&](double rho) {
return CalDRDrho(rho, sp_para_->R_lambda) * (lambda0 - lambda_min);
};
auto CalDlambdaDrho_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return CalDRDrho_Vec(vec_rho, sp_para_->R_lambda) * (lambda0 - lambda_min);
};
auto CalBeta = [&](double rho) {
return CalR(rho, sp_para_->R_beta) * E0_m * alpha0;
};
auto CalDBetaDrho = [&](double rho) {
return CalDRDrho(rho, sp_para_->R_beta) * E0_m * alpha0;
};
// solve T
Eigen::VectorXd sK_th =
(sp_thermal_top3d_->sKe_ * CalLambda_Vec(xPhys_col).transpose())
.reshaped();
auto v_tri_th = Vec2Triplet(sp_thermal_top3d_->iK_, sp_thermal_top3d_->jK_, sK_th);
sp_thermal_top3d_->K_.setFromTriplets(v_tri_th.begin(), v_tri_th.end());
sp_thermal_top3d_->IntroduceFixedDofs(sp_thermal_top3d_->K_, sp_thermal_top3d_->F_);
#ifdef USE_SUITESPARSE
Eigen::CholmodSupernodalLLT<Eigen::SparseMatrix<double>> solver_th;
#else
Eigen::SimplicialLLT<Eigen::SparseMatrix<double>> solver_th;
#endif
solver_th.compute(sp_thermal_top3d_->K_);
sp_thermal_top3d_->U_ = solver_th.solve(sp_thermal_top3d_->F_);
// solve U
Eigen::VectorXd sK_m =
(sp_mech_top3d_->sKe_ * CalE_Vec(xPhys_col).transpose())
.reshaped();
auto v_tri_m = Vec2Triplet(sp_mech_top3d_->iK_, sp_mech_top3d_->jK_, sK_m);
sp_mech_top3d_->K_.setFromTriplets(v_tri_m.begin(), v_tri_m.end());
// for each element
Eigen::VectorXd &T = sp_thermal_top3d_->U_;
Eigen::VectorXd F_th = Eigen::VectorXd::Zero(sp_mech_top3d_->sp_mesh_->GetNumDofs());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i);
double Te = T(dofs_th).mean();
double beta_rho = CalBeta(xPhys_col(i));
F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
}
Eigen::VectorXd F = Eigen::VectorXd(sp_mech_top3d_->F_) + F_th;
sp_mech_top3d_->IntroduceFixedDofs(sp_mech_top3d_->K_, F);
#ifdef USE_SUITESPARSE
Eigen::CholmodSupernodalLLT<Eigen::SparseMatrix<double>> solver;
#else
Eigen::SimplicialLLT<Eigen::SparseMatrix<double>> solver;
#endif
solver.compute(sp_mech_top3d_->K_);
sp_mech_top3d_->U_ = solver.solve(F);
// compliance
Eigen::VectorXd ce(sp_mesh_->GetNumEles());
for (int i = 0; i < sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_in_ele_i = sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXd Ue = sp_mech_top3d_->U_(dofs_in_ele_i);
ce(i) = Ue.transpose() * sp_mech_top3d_->Ke_ * Ue;
}
double c =
ce.transpose() * CalE_Vec(xPhys_col);
double v = flg_chosen ? xPhys_col(chosen_ele_id).sum() : xPhys_col.sum();
// sensitivity
// lambda_m
Eigen::VectorXd lambda_m = -sp_mech_top3d_->U_;
// dFth_drho
Eigen::SparseMatrix<double> dFth_drho(sp_mech_top3d_->sp_mesh_->GetNumEles(),
sp_mech_top3d_->sp_mesh_->GetNumDofs());
Eigen::VectorXd v_dFth_drho(i_dFth_drho_.size());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i);
double Te = T(dofs_th).mean();
// double beta_rho = CalBeta(xPhys_col(i));
// F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
Eigen::VectorXd ele_dFth_drho =
CalDBetaDrho(xPhys_col(i)) * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;// 24x1
assert(ele_dFth_drho.size() == 24);
v_dFth_drho(Eigen::seqN(i * ele_dFth_drho.rows(), ele_dFth_drho.size())) = ele_dFth_drho;
}
auto v_dFth_drho_tri = Vec2Triplet(i_dFth_drho_, j_dFth_drho_, v_dFth_drho);
dFth_drho.setFromTriplets(v_dFth_drho_tri.begin(), v_dFth_drho_tri.end());
// dFth_dT
Eigen::SparseMatrix<double> dFth_dT(sp_thermal_top3d_->sp_mesh_->GetNumDofs(),
sp_mech_top3d_->sp_mesh_->GetNumDofs());
Eigen::VectorXd v_dFth_dT(i_dFth_dT_.size());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i);
double beta_rho = CalBeta(xPhys_col(i));
// F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
Eigen::MatrixXd ele_dFth_dT =
Eigen::VectorXd::Ones(dofs_th.size()) * 1.0 / 8.0 * beta_rho * Inted_.transpose();
assert(ele_dFth_dT.rows() == 8 && ele_dFth_dT.cols() == 24);
v_dFth_dT(Eigen::seqN(i * ele_dFth_dT.rows(), ele_dFth_dT.size())) = ele_dFth_dT.reshaped();
}
auto v_dFth_dT_tri = Vec2Triplet(i_dFth_dT_, j_dFth_dT_, v_dFth_dT);
dFth_dT.setFromTriplets(v_dFth_dT_tri.begin(), v_dFth_dT_tri.end());
Eigen::VectorXd rhs = dFth_dT * lambda_m;
for (auto dof_value: sp_thermal_top3d_->v_dofs_to_set) {
auto [dof, value] = dof_value;
rhs(dof) = sp_thermal_top3d_->K_.coeffRef(dof, dof) * value;
}
// lambda_t
Eigen::VectorXd lambda_t = solver_th.solve(rhs);
// dF_drho
Eigen::SparseMatrix<double> &dF_drho = dFth_drho;
// lambda_m_Mul_dKm_drho_Mul_U
Eigen::VectorXd lambda_m_Mul_dKm_drho_Mul_U =
-CalDEDrho_Vec(xPhys_col).array() * ce.array();
// lambda_t_Mul_dKt_drho_Mul_T
Eigen::VectorXd ce_th(sp_thermal_top3d_->sp_mesh_->GetNumEles());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXd Te = sp_thermal_top3d_->U_(dofs_in_ele_i);
Eigen::VectorXd lambda_t_e = lambda_t(dofs_in_ele_i);
ce_th(i) = lambda_t_e.transpose() * sp_thermal_top3d_->Ke_ * Te;
}
Eigen::VectorXd lambda_t_Mul_dKt_drho_Mul_T = CalDlambdaDrho_Vec(xPhys_col).array() * ce_th.array();
// dc_drho
Eigen::VectorXd dc_drho = lambda_t_Mul_dKt_drho_Mul_T +
lambda_m_Mul_dKm_drho_Mul_U +
2 * Eigen::VectorXd(dF_drho * sp_mech_top3d_->U_);
// Eigen::VectorXd dc_drho =
// lambda_m_Mul_dKm_drho_Mul_U +
// 2 * Eigen::VectorXd(dF_drho * sp_mech_top3d_->U_);
// dT_drho
Eigen::MatrixXd dT_drho = Eigen::MatrixXd::Zero(sp_thermal_top3d_->sp_mesh_->GetNumEles(),
sp_thermal_top3d_->set_dofs_to_load.size());
for (auto it = map_ele2Limit.begin(); it != map_ele2Limit.end(); ++it) {
auto [ele_id, v_limited] = *it;
Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(ele_id);
Eigen::VectorXd dKe_th_Mul_T =
CalDlambdaDrho(xPhys_col(ele_id)) * sp_thermal_top3d_->Ke_ * T(dofs_in_ele_i);
Eigen::MatrixXd Ke_th(sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE(),
sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE());
for (int j1 = 0; j1 < Ke_th.cols(); ++j1) {
for (int i1 = 0; i1 < Ke_th.rows(); ++i1) {
Ke_th(i1, j1) = sp_thermal_top3d_->K_.coeffRef(i1, j1);
}
}
Eigen::VectorXd ele_dT_drho = Ke_th.llt().solve(-dKe_th_Mul_T);
for (auto &limited: v_limited) {
dT_drho(ele_id, limited.idx_of_load_dof) = ele_dT_drho(limited.idx_in_ele);
}
}
// for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
// Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
// Eigen::VectorXd dKe_th_Mul_T =
// CalDlambdaDrho(xPhys_col(i)) * sp_thermal_top3d_->Ke_ * T(dofs_in_ele_i);
// Eigen::MatrixXd Ke_th(sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE(),
// sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE());
// for (int j1 = 0; j1 < Ke_th.cols(); ++j1) {
// for (int i1 = 0; i1 < Ke_th.rows(); ++i1) {
// Ke_th(i1, j1) = sp_thermal_top3d_->K_.coeffRef(i1, j1);
// }
// }
// Eigen::VectorXd ele_dT_drho = Ke_th.llt().solve(-dKe_th_Mul_T);
// dT_drho(i, dofs_in_ele_i) = ele_dT_drho.transpose();
// }
// for (auto dof_value: sp_thermal_top3d_->v_dofs_to_set) {
// auto [dof, value] = dof_value;
// dT_drho.col(dof).setZero();
// }
// dc_dx
Eigen::VectorXd dc_dx = drho_dx_ * dc_drho;
// dT_dx
Eigen::MatrixXd dT_dx = drho_dx_ * dT_drho;
// mma solver
size_t num_constraints =
1 + dT_dx.cols();// volume and temperature constraints
size_t num_variables = flg_chosen ? chosen_ele_id.size() : sp_mesh_->GetNumEles();
auto mma = std::make_shared<MMASolver>(num_variables, num_constraints);
Eigen::VectorXd variables_tmp = flg_chosen ? xPhys_col(chosen_ele_id) : xPhys_col;
double f0val = c;
Eigen::VectorXd df0dx = flg_chosen
? dc_dx(chosen_ele_id).eval() / dc_dx(chosen_ele_id).cwiseAbs().maxCoeff()
: dc_dx / dc_dx.cwiseAbs().maxCoeff();
// double fval = v - num_variables * sp_para_->volfrac;
Eigen::VectorXd fval = (Eigen::VectorXd(num_constraints) << (v / num_variables - sp_para_->volfrac),
T(v_dof).array() / sp_para_->T_limit - 1).finished();
// Eigen::VectorXd dfdx = flg_chosen ? dv(chosen_ele_id) : dv;
Eigen::MatrixXd dfdx = (Eigen::MatrixXd(num_variables, num_constraints)
<< 1.0 / num_variables * dv, 1.0 / sp_para_->T_limit * dT_dx).finished().transpose();
static Eigen::VectorXd low_bounds = Eigen::VectorXd::Zero(num_variables);
static Eigen::VectorXd up_bounds = Eigen::VectorXd::Ones(num_variables);
// spdlog::info("mma update");
mma->Update(variables_tmp.data(), df0dx.data(), fval.data(), dfdx.data(), low_bounds.data(),
up_bounds.data());
if (flg_chosen) {
change = (variables_tmp - xPhys_col(chosen_ele_id)).cwiseAbs().maxCoeff();
xPhys_col(chosen_ele_id) = variables_tmp;
} else {
change = (variables_tmp - xPhys_col).cwiseAbs().maxCoeff();
xPhys_col = variables_tmp;
}
spdlog::critical("Iter: {:3d}, Comp: {:.3e}, Vol: {:.2f}, Change: {:f}", loop, c, v, change);
std::cout << fval.transpose() << std::endl;
#ifdef WRITE_TENSOR_IN_LOOP
// extract vtk
ele_to_write(pixel_idx) = xPhys_col;
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1);
for (int i = 0; i < ele_to_write.size(); ++i) {
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i);
}
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()});
top::WriteTensorToVtk(
da::WorkingResultDirectoryPath() / ("field_matrix" + std::to_string(loop) + ".vtk"),
ten_xPhys_to_write, sp_mesh_);
#endif
}
// result
sp_mech_top3d_->rho_ = xPhys_col;
// set 0 to rho of unchosen part
assert(xPhys_col.size());
Eigen::VectorXi continue_idx =
Eigen::VectorXi::LinSpaced(xPhys_col.size(), 0, xPhys_col.size() - 1);
Eigen::VectorXi unchosen_idx = flg_chosen ? SetDifference(continue_idx, chosen_ele_id) : Eigen::VectorXi();
{
xPhys_col(unchosen_idx).setZero();
ele_to_write(pixel_idx) = xPhys_col;
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1);
for (int i = 0; i < ele_to_write.size(); ++i) {
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i);
}
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()});
sp_mech_top3d_->rho_field_zero_filled_ = ten_xPhys_to_write;
}
{
xPhys_col(unchosen_idx).setOnes();
ele_to_write(pixel_idx) = xPhys_col;
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1);
for (int i = 0; i < ele_to_write.size(); ++i) {
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i);
}
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()});
sp_mech_top3d_->rho_field_one_filled_ = ten_xPhys_to_write;
}
return sp_mech_top3d_->rho_field_zero_filled_;
}

359
src/ThermoelasticTop3d.h

@ -15,364 +15,7 @@ namespace da::sha::top {
Precompute();
}
Tensor3d TopOptMainLoop() {
auto &sp_mesh_ = sp_mech_top3d_->sp_mesh_;
auto &sp_para_ = sp_mech_top3d_->sp_para_;
Eigen::VectorXd xPhys_col(sp_mesh_->GetNumEles());
xPhys_col.setConstant(sp_para_->volfrac);
bool flg_chosen = false;
Eigen::VectorXi chosen_ele_id;
// Eigen::VectorXi chosen_ele_id(sp_mesh_->GetChosenEleIdx());
// bool flg_chosen = chosen_ele_id.size() != 0;
// if (!flg_chosen) {
// // no part chosen
// xPhys_col.setConstant(sp_para_->volfrac);
// } else {
// // pick chosen part to sim
// xPhys_col = sp_mesh_->GetInitEleRho();
// xPhys_col(chosen_ele_id).setConstant(sp_para_->volfrac);
// }
int loop = 0;
double change = 1.0;
double E0_m = sp_mech_top3d_->sp_fea_->sp_material_->E;
double lambda0 = sp_mech_top3d_->sp_fea_->sp_material_->thermal_conductivity;
double lambda_min = lambda0 * sp_mech_top3d_->sp_para_->E_factor;
double alpha0 = sp_mech_top3d_->sp_fea_->sp_material_->thermal_expansion_coefficient;
// Precompute
Eigen::VectorXd dv(sp_mesh_->GetNumEles());
dv.setOnes();
dv = sp_mech_top3d_->H_ * (dv.array() / sp_mech_top3d_->Hs_.array()).matrix().eval();
Eigen::VectorXd ele_to_write =
Eigen::VectorXd::Zero(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz());
Eigen::VectorXi pixel_idx = sp_mesh_->GetPixelIdx();
// dofs of limited T
struct LimitedDof {
int dof;
int idx_of_load_dof;
int idx_in_ele;
LimitedDof(int dof, int idx_of_load_dof, int idx_in_ele) : dof(dof), idx_of_load_dof(idx_of_load_dof),
idx_in_ele(idx_in_ele) {}
};
std::map<int, std::vector<LimitedDof>> map_ele2Limit;
std::vector<int> v_dof(sp_thermal_top3d_->set_dofs_to_load.begin(),
sp_thermal_top3d_->set_dofs_to_load.end());
{
Eigen::MatrixXi ele2dof_map = sp_thermal_top3d_->sp_mesh_->GetEleId2DofsMap();
// loop ele2dof_map
for (int i = 0; i < ele2dof_map.rows(); ++i) {
for (int j = 0; j < ele2dof_map.cols(); ++j) {
for (int k = 0; k < v_dof.size(); ++k) {
if (ele2dof_map(i, j) == v_dof[k]) {
if (map_ele2Limit.find(i) == map_ele2Limit.end()) {
map_ele2Limit[i] = {LimitedDof(v_dof[k], k, j)};
} else {
map_ele2Limit[i].push_back(LimitedDof(v_dof[k], k, j));
}
}
}
}
}
}
spdlog::info("end Precompute");
#ifdef USE_SUITESPARSE
spdlog::info("using suitesparse solver");
#else
spdlog::warn("using Eigen built-in direct solver!");
#endif
// start iteration
while (change > sp_para_->tol_x * 1 && loop < sp_para_->max_loop) {
++loop;
// filter
xPhys_col = sp_mech_top3d_->H_ * (xPhys_col.array() / sp_mech_top3d_->Hs_.array()).matrix().eval();
auto CalR = [](double rho, double R) {
return rho / (1.0 + R * (1.0 - rho));
};
auto CalR_Vec = [](const Eigen::VectorXd &vec_rho, double R) -> Eigen::VectorXd {
return vec_rho.array() / (1.0 + R * (1.0 - vec_rho.array()));
};
auto CalDRDrho = [](double rho, double R) {
double down = 1 + R * (1 - rho);
return (1 + R) / down * down;
};
auto CalDRDrho_Vec = [](const Eigen::VectorXd &vec_rho, double R) -> Eigen::VectorXd {
auto down = 1 + R * (1 - vec_rho.array());
return (1 + R) / down.pow(2);
};
auto CalE_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return CalR_Vec(vec_rho, sp_para_->R_E) * E0_m;
};
auto CalDEDrho_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return CalDRDrho_Vec(vec_rho, sp_para_->R_E) * E0_m;
};
auto CalLambda_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return lambda_min + CalR_Vec(vec_rho, sp_para_->R_lambda).array() * (lambda0 - lambda_min);
};
auto CalDlambdaDrho = [&](double rho) {
return CalDRDrho(rho, sp_para_->R_lambda) * (lambda0 - lambda_min);
};
auto CalDlambdaDrho_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd {
return CalDRDrho_Vec(vec_rho, sp_para_->R_lambda) * (lambda0 - lambda_min);
};
auto CalBeta = [&](double rho) {
return CalR(rho, sp_para_->R_beta) * E0_m * alpha0;
};
auto CalDBetaDrho = [&](double rho) {
return CalDRDrho(rho, sp_para_->R_beta) * E0_m * alpha0;
};
// solve T
Eigen::VectorXd sK_th =
(sp_thermal_top3d_->sKe_ * CalLambda_Vec(xPhys_col).transpose())
.reshaped();
auto v_tri_th = Vec2Triplet(sp_thermal_top3d_->iK_, sp_thermal_top3d_->jK_, sK_th);
sp_thermal_top3d_->K_.setFromTriplets(v_tri_th.begin(), v_tri_th.end());
sp_thermal_top3d_->IntroduceFixedDofs(sp_thermal_top3d_->K_, sp_thermal_top3d_->F_);
#ifdef USE_SUITESPARSE
Eigen::CholmodSupernodalLLT<Eigen::SparseMatrix<double>> solver_th;
#else
Eigen::SimplicialLLT<Eigen::SparseMatrix<double>> solver_th;
#endif
solver_th.compute(sp_thermal_top3d_->K_);
sp_thermal_top3d_->U_ = solver_th.solve(sp_thermal_top3d_->F_);
// solve U
Eigen::VectorXd sK_m =
(sp_mech_top3d_->sKe_ * CalE_Vec(xPhys_col).transpose())
.reshaped();
auto v_tri_m = Vec2Triplet(sp_mech_top3d_->iK_, sp_mech_top3d_->jK_, sK_m);
sp_mech_top3d_->K_.setFromTriplets(v_tri_m.begin(), v_tri_m.end());
// for each element
Eigen::VectorXd &T = sp_thermal_top3d_->U_;
Eigen::VectorXd F_th = Eigen::VectorXd::Zero(sp_mech_top3d_->sp_mesh_->GetNumDofs());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i);
double Te = T(dofs_th).mean();
double beta_rho = CalBeta(xPhys_col(i));
F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
}
Eigen::VectorXd F = Eigen::VectorXd(sp_mech_top3d_->F_) + F_th;
sp_mech_top3d_->IntroduceFixedDofs(sp_mech_top3d_->K_, F);
#ifdef USE_SUITESPARSE
Eigen::CholmodSupernodalLLT<Eigen::SparseMatrix<double>> solver;
#else
Eigen::SimplicialLLT<Eigen::SparseMatrix<double>> solver;
#endif
solver.compute(sp_mech_top3d_->K_);
sp_mech_top3d_->U_ = solver.solve(F);
// compliance
Eigen::VectorXd ce(sp_mesh_->GetNumEles());
for (int i = 0; i < sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_in_ele_i = sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXd Ue = sp_mech_top3d_->U_(dofs_in_ele_i);
ce(i) = Ue.transpose() * sp_mech_top3d_->Ke_ * Ue;
}
double c =
ce.transpose() * CalE_Vec(xPhys_col);
double v = flg_chosen ? xPhys_col(chosen_ele_id).sum() : xPhys_col.sum();
// sensitivity
// lambda_m
Eigen::VectorXd lambda_m = -sp_mech_top3d_->U_;
// dFth_drho
Eigen::SparseMatrix<double> dFth_drho(sp_mech_top3d_->sp_mesh_->GetNumEles(),
sp_mech_top3d_->sp_mesh_->GetNumDofs());
Eigen::VectorXd v_dFth_drho(i_dFth_drho_.size());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i);
double Te = T(dofs_th).mean();
// double beta_rho = CalBeta(xPhys_col(i));
// F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
Eigen::VectorXd ele_dFth_drho =
CalDBetaDrho(xPhys_col(i)) * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;// 24x1
assert(ele_dFth_drho.size() == 24);
v_dFth_drho(Eigen::seqN(i * ele_dFth_drho.rows(), ele_dFth_drho.size())) = ele_dFth_drho;
}
auto v_dFth_drho_tri = Vec2Triplet(i_dFth_drho_, j_dFth_drho_, v_dFth_drho);
dFth_drho.setFromTriplets(v_dFth_drho_tri.begin(), v_dFth_drho_tri.end());
// dFth_dT
Eigen::SparseMatrix<double> dFth_dT(sp_thermal_top3d_->sp_mesh_->GetNumDofs(),
sp_mech_top3d_->sp_mesh_->GetNumDofs());
Eigen::VectorXd v_dFth_dT(i_dFth_dT_.size());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i);
double beta_rho = CalBeta(xPhys_col(i));
// F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
Eigen::MatrixXd ele_dFth_dT =
Eigen::VectorXd::Ones(dofs_th.size()) * 1.0 / 8.0 * beta_rho * Inted_.transpose();
assert(ele_dFth_dT.rows() == 8 && ele_dFth_dT.cols() == 24);
v_dFth_dT(Eigen::seqN(i * ele_dFth_dT.rows(), ele_dFth_dT.size())) = ele_dFth_dT.reshaped();
}
auto v_dFth_dT_tri = Vec2Triplet(i_dFth_dT_, j_dFth_dT_, v_dFth_dT);
dFth_dT.setFromTriplets(v_dFth_dT_tri.begin(), v_dFth_dT_tri.end());
Eigen::VectorXd rhs = dFth_dT * lambda_m;
for (auto dof_value: sp_thermal_top3d_->v_dofs_to_set) {
auto [dof, value] = dof_value;
rhs(dof) = sp_thermal_top3d_->K_.coeffRef(dof, dof) * value;
}
// lambda_t
Eigen::VectorXd lambda_t = solver_th.solve(rhs);
// dF_drho
Eigen::SparseMatrix<double> &dF_drho = dFth_drho;
// lambda_m_Mul_dKm_drho_Mul_U
Eigen::VectorXd lambda_m_Mul_dKm_drho_Mul_U =
-CalDEDrho_Vec(xPhys_col).array() * ce.array();
// lambda_t_Mul_dKt_drho_Mul_T
Eigen::VectorXd ce_th(sp_thermal_top3d_->sp_mesh_->GetNumEles());
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
Eigen::VectorXd Te = sp_thermal_top3d_->U_(dofs_in_ele_i);
Eigen::VectorXd lambda_t_e = lambda_t(dofs_in_ele_i);
ce_th(i) = lambda_t_e.transpose() * sp_thermal_top3d_->Ke_ * Te;
}
Eigen::VectorXd lambda_t_Mul_dKt_drho_Mul_T = CalDlambdaDrho_Vec(xPhys_col).array() * ce_th.array();
// dc_drho
Eigen::VectorXd dc_drho = lambda_t_Mul_dKt_drho_Mul_T +
lambda_m_Mul_dKm_drho_Mul_U +
2 * Eigen::VectorXd(dF_drho * sp_mech_top3d_->U_);
// Eigen::VectorXd dc_drho =
// lambda_m_Mul_dKm_drho_Mul_U +
// 2 * Eigen::VectorXd(dF_drho * sp_mech_top3d_->U_);
// dT_drho
Eigen::MatrixXd dT_drho = Eigen::MatrixXd::Zero(sp_thermal_top3d_->sp_mesh_->GetNumEles(),
sp_thermal_top3d_->set_dofs_to_load.size());
for (auto it = map_ele2Limit.begin(); it != map_ele2Limit.end(); ++it) {
auto [ele_id, v_limited] = *it;
Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(ele_id);
Eigen::VectorXd dKe_th_Mul_T =
CalDlambdaDrho(xPhys_col(ele_id)) * sp_thermal_top3d_->Ke_ * T(dofs_in_ele_i);
Eigen::MatrixXd Ke_th(sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE(),
sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE());
for (int j1 = 0; j1 < Ke_th.cols(); ++j1) {
for (int i1 = 0; i1 < Ke_th.rows(); ++i1) {
Ke_th(i1, j1) = sp_thermal_top3d_->K_.coeffRef(i1, j1);
}
}
Eigen::VectorXd ele_dT_drho = Ke_th.llt().solve(-dKe_th_Mul_T);
for (auto &limited: v_limited) {
dT_drho(ele_id, limited.idx_of_load_dof) = ele_dT_drho(limited.idx_in_ele);
}
}
// for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
// Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
// Eigen::VectorXd dKe_th_Mul_T =
// CalDlambdaDrho(xPhys_col(i)) * sp_thermal_top3d_->Ke_ * T(dofs_in_ele_i);
// Eigen::MatrixXd Ke_th(sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE(),
// sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE());
// for (int j1 = 0; j1 < Ke_th.cols(); ++j1) {
// for (int i1 = 0; i1 < Ke_th.rows(); ++i1) {
// Ke_th(i1, j1) = sp_thermal_top3d_->K_.coeffRef(i1, j1);
// }
// }
// Eigen::VectorXd ele_dT_drho = Ke_th.llt().solve(-dKe_th_Mul_T);
// dT_drho(i, dofs_in_ele_i) = ele_dT_drho.transpose();
// }
// for (auto dof_value: sp_thermal_top3d_->v_dofs_to_set) {
// auto [dof, value] = dof_value;
// dT_drho.col(dof).setZero();
// }
// dc_dx
Eigen::VectorXd dc_dx = drho_dx_ * dc_drho;
// dT_dx
Eigen::MatrixXd dT_dx = drho_dx_ * dT_drho;
// mma solver
size_t num_constraints =
1 + dT_dx.cols();// volume and temperature constraints
size_t num_variables = flg_chosen ? chosen_ele_id.size() : sp_mesh_->GetNumEles();
auto mma = std::make_shared<MMASolver>(num_variables, num_constraints);
Eigen::VectorXd variables_tmp = flg_chosen ? xPhys_col(chosen_ele_id) : xPhys_col;
double f0val = c;
Eigen::VectorXd df0dx = flg_chosen
? dc_dx(chosen_ele_id).eval() / dc_dx(chosen_ele_id).cwiseAbs().maxCoeff()
: dc_dx / dc_dx.cwiseAbs().maxCoeff();
// double fval = v - num_variables * sp_para_->volfrac;
Eigen::VectorXd fval = (Eigen::VectorXd(num_constraints) << (v / num_variables - sp_para_->volfrac),
T(v_dof).array() / sp_para_->T_limit - 1).finished();
// Eigen::VectorXd dfdx = flg_chosen ? dv(chosen_ele_id) : dv;
Eigen::MatrixXd dfdx = (Eigen::MatrixXd(num_variables, num_constraints)
<< 1.0 / num_variables * dv, 1.0 / sp_para_->T_limit * dT_dx).finished().transpose();
static Eigen::VectorXd low_bounds = Eigen::VectorXd::Zero(num_variables);
static Eigen::VectorXd up_bounds = Eigen::VectorXd::Ones(num_variables);
// spdlog::info("mma update");
mma->Update(variables_tmp.data(), df0dx.data(), fval.data(), dfdx.data(), low_bounds.data(),
up_bounds.data());
if (flg_chosen) {
change = (variables_tmp - xPhys_col(chosen_ele_id)).cwiseAbs().maxCoeff();
xPhys_col(chosen_ele_id) = variables_tmp;
} else {
change = (variables_tmp - xPhys_col).cwiseAbs().maxCoeff();
xPhys_col = variables_tmp;
}
spdlog::critical("Iter: {:3d}, Comp: {:.3e}, Vol: {:.2f}, Change: {:f}", loop, c, v, change);
std::cout << fval.transpose() << std::endl;
#ifdef WRITE_TENSOR_IN_LOOP
// extract vtk
ele_to_write(pixel_idx) = xPhys_col;
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1);
for (int i = 0; i < ele_to_write.size(); ++i) {
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i);
}
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()});
top::WriteTensorToVtk(
da::WorkingResultDirectoryPath() / ("field_matrix" + std::to_string(loop) + ".vtk"),
ten_xPhys_to_write, sp_mesh_);
#endif
}
// result
sp_mech_top3d_->rho_ = xPhys_col;
// set 0 to rho of unchosen part
assert(xPhys_col.size());
Eigen::VectorXi continue_idx =
Eigen::VectorXi::LinSpaced(xPhys_col.size(), 0, xPhys_col.size() - 1);
Eigen::VectorXi unchosen_idx = flg_chosen ? SetDifference(continue_idx, chosen_ele_id) : Eigen::VectorXi();
{
xPhys_col(unchosen_idx).setZero();
ele_to_write(pixel_idx) = xPhys_col;
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1);
for (int i = 0; i < ele_to_write.size(); ++i) {
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i);
}
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()});
sp_mech_top3d_->rho_field_zero_filled_ = ten_xPhys_to_write;
}
{
xPhys_col(unchosen_idx).setOnes();
ele_to_write(pixel_idx) = xPhys_col;
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1);
for (int i = 0; i < ele_to_write.size(); ++i) {
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i);
}
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()});
sp_mech_top3d_->rho_field_one_filled_ = ten_xPhys_to_write;
}
return sp_mech_top3d_->rho_field_zero_filled_;
}
Tensor3d TopOptMainLoop();
Eigen::VectorXd GetU() const {
return sp_thermal_top3d_->GetU();

Loading…
Cancel
Save