|
|
@ -15,364 +15,7 @@ namespace da::sha::top { |
|
|
|
Precompute(); |
|
|
|
} |
|
|
|
|
|
|
|
Tensor3d TopOptMainLoop() { |
|
|
|
auto &sp_mesh_ = sp_mech_top3d_->sp_mesh_; |
|
|
|
auto &sp_para_ = sp_mech_top3d_->sp_para_; |
|
|
|
Eigen::VectorXd xPhys_col(sp_mesh_->GetNumEles()); |
|
|
|
xPhys_col.setConstant(sp_para_->volfrac); |
|
|
|
bool flg_chosen = false; |
|
|
|
Eigen::VectorXi chosen_ele_id; |
|
|
|
// Eigen::VectorXi chosen_ele_id(sp_mesh_->GetChosenEleIdx());
|
|
|
|
// bool flg_chosen = chosen_ele_id.size() != 0;
|
|
|
|
// if (!flg_chosen) {
|
|
|
|
// // no part chosen
|
|
|
|
// xPhys_col.setConstant(sp_para_->volfrac);
|
|
|
|
// } else {
|
|
|
|
// // pick chosen part to sim
|
|
|
|
// xPhys_col = sp_mesh_->GetInitEleRho();
|
|
|
|
// xPhys_col(chosen_ele_id).setConstant(sp_para_->volfrac);
|
|
|
|
// }
|
|
|
|
|
|
|
|
int loop = 0; |
|
|
|
double change = 1.0; |
|
|
|
double E0_m = sp_mech_top3d_->sp_fea_->sp_material_->E; |
|
|
|
double lambda0 = sp_mech_top3d_->sp_fea_->sp_material_->thermal_conductivity; |
|
|
|
double lambda_min = lambda0 * sp_mech_top3d_->sp_para_->E_factor; |
|
|
|
double alpha0 = sp_mech_top3d_->sp_fea_->sp_material_->thermal_expansion_coefficient; |
|
|
|
// Precompute
|
|
|
|
|
|
|
|
Eigen::VectorXd dv(sp_mesh_->GetNumEles()); |
|
|
|
dv.setOnes(); |
|
|
|
dv = sp_mech_top3d_->H_ * (dv.array() / sp_mech_top3d_->Hs_.array()).matrix().eval(); |
|
|
|
|
|
|
|
Eigen::VectorXd ele_to_write = |
|
|
|
Eigen::VectorXd::Zero(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz()); |
|
|
|
Eigen::VectorXi pixel_idx = sp_mesh_->GetPixelIdx(); |
|
|
|
|
|
|
|
// dofs of limited T
|
|
|
|
struct LimitedDof { |
|
|
|
int dof; |
|
|
|
int idx_of_load_dof; |
|
|
|
int idx_in_ele; |
|
|
|
|
|
|
|
LimitedDof(int dof, int idx_of_load_dof, int idx_in_ele) : dof(dof), idx_of_load_dof(idx_of_load_dof), |
|
|
|
idx_in_ele(idx_in_ele) {} |
|
|
|
}; |
|
|
|
std::map<int, std::vector<LimitedDof>> map_ele2Limit; |
|
|
|
std::vector<int> v_dof(sp_thermal_top3d_->set_dofs_to_load.begin(), |
|
|
|
sp_thermal_top3d_->set_dofs_to_load.end()); |
|
|
|
{ |
|
|
|
Eigen::MatrixXi ele2dof_map = sp_thermal_top3d_->sp_mesh_->GetEleId2DofsMap(); |
|
|
|
// loop ele2dof_map
|
|
|
|
for (int i = 0; i < ele2dof_map.rows(); ++i) { |
|
|
|
for (int j = 0; j < ele2dof_map.cols(); ++j) { |
|
|
|
for (int k = 0; k < v_dof.size(); ++k) { |
|
|
|
if (ele2dof_map(i, j) == v_dof[k]) { |
|
|
|
if (map_ele2Limit.find(i) == map_ele2Limit.end()) { |
|
|
|
map_ele2Limit[i] = {LimitedDof(v_dof[k], k, j)}; |
|
|
|
} else { |
|
|
|
map_ele2Limit[i].push_back(LimitedDof(v_dof[k], k, j)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
spdlog::info("end Precompute"); |
|
|
|
|
|
|
|
#ifdef USE_SUITESPARSE |
|
|
|
spdlog::info("using suitesparse solver"); |
|
|
|
#else |
|
|
|
spdlog::warn("using Eigen built-in direct solver!"); |
|
|
|
#endif |
|
|
|
// start iteration
|
|
|
|
while (change > sp_para_->tol_x * 1 && loop < sp_para_->max_loop) { |
|
|
|
++loop; |
|
|
|
// filter
|
|
|
|
xPhys_col = sp_mech_top3d_->H_ * (xPhys_col.array() / sp_mech_top3d_->Hs_.array()).matrix().eval(); |
|
|
|
auto CalR = [](double rho, double R) { |
|
|
|
return rho / (1.0 + R * (1.0 - rho)); |
|
|
|
}; |
|
|
|
auto CalR_Vec = [](const Eigen::VectorXd &vec_rho, double R) -> Eigen::VectorXd { |
|
|
|
return vec_rho.array() / (1.0 + R * (1.0 - vec_rho.array())); |
|
|
|
}; |
|
|
|
auto CalDRDrho = [](double rho, double R) { |
|
|
|
double down = 1 + R * (1 - rho); |
|
|
|
return (1 + R) / down * down; |
|
|
|
}; |
|
|
|
auto CalDRDrho_Vec = [](const Eigen::VectorXd &vec_rho, double R) -> Eigen::VectorXd { |
|
|
|
auto down = 1 + R * (1 - vec_rho.array()); |
|
|
|
return (1 + R) / down.pow(2); |
|
|
|
}; |
|
|
|
auto CalE_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd { |
|
|
|
return CalR_Vec(vec_rho, sp_para_->R_E) * E0_m; |
|
|
|
}; |
|
|
|
auto CalDEDrho_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd { |
|
|
|
return CalDRDrho_Vec(vec_rho, sp_para_->R_E) * E0_m; |
|
|
|
}; |
|
|
|
auto CalLambda_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd { |
|
|
|
return lambda_min + CalR_Vec(vec_rho, sp_para_->R_lambda).array() * (lambda0 - lambda_min); |
|
|
|
}; |
|
|
|
auto CalDlambdaDrho = [&](double rho) { |
|
|
|
return CalDRDrho(rho, sp_para_->R_lambda) * (lambda0 - lambda_min); |
|
|
|
}; |
|
|
|
auto CalDlambdaDrho_Vec = [&](const Eigen::VectorXd &vec_rho) -> Eigen::VectorXd { |
|
|
|
return CalDRDrho_Vec(vec_rho, sp_para_->R_lambda) * (lambda0 - lambda_min); |
|
|
|
}; |
|
|
|
|
|
|
|
auto CalBeta = [&](double rho) { |
|
|
|
return CalR(rho, sp_para_->R_beta) * E0_m * alpha0; |
|
|
|
}; |
|
|
|
auto CalDBetaDrho = [&](double rho) { |
|
|
|
return CalDRDrho(rho, sp_para_->R_beta) * E0_m * alpha0; |
|
|
|
}; |
|
|
|
// solve T
|
|
|
|
|
|
|
|
Eigen::VectorXd sK_th = |
|
|
|
(sp_thermal_top3d_->sKe_ * CalLambda_Vec(xPhys_col).transpose()) |
|
|
|
.reshaped(); |
|
|
|
auto v_tri_th = Vec2Triplet(sp_thermal_top3d_->iK_, sp_thermal_top3d_->jK_, sK_th); |
|
|
|
sp_thermal_top3d_->K_.setFromTriplets(v_tri_th.begin(), v_tri_th.end()); |
|
|
|
sp_thermal_top3d_->IntroduceFixedDofs(sp_thermal_top3d_->K_, sp_thermal_top3d_->F_); |
|
|
|
#ifdef USE_SUITESPARSE |
|
|
|
Eigen::CholmodSupernodalLLT<Eigen::SparseMatrix<double>> solver_th; |
|
|
|
#else |
|
|
|
Eigen::SimplicialLLT<Eigen::SparseMatrix<double>> solver_th; |
|
|
|
#endif |
|
|
|
solver_th.compute(sp_thermal_top3d_->K_); |
|
|
|
sp_thermal_top3d_->U_ = solver_th.solve(sp_thermal_top3d_->F_); |
|
|
|
|
|
|
|
|
|
|
|
// solve U
|
|
|
|
|
|
|
|
Eigen::VectorXd sK_m = |
|
|
|
(sp_mech_top3d_->sKe_ * CalE_Vec(xPhys_col).transpose()) |
|
|
|
.reshaped(); |
|
|
|
auto v_tri_m = Vec2Triplet(sp_mech_top3d_->iK_, sp_mech_top3d_->jK_, sK_m); |
|
|
|
sp_mech_top3d_->K_.setFromTriplets(v_tri_m.begin(), v_tri_m.end()); |
|
|
|
// for each element
|
|
|
|
Eigen::VectorXd &T = sp_thermal_top3d_->U_; |
|
|
|
Eigen::VectorXd F_th = Eigen::VectorXd::Zero(sp_mech_top3d_->sp_mesh_->GetNumDofs()); |
|
|
|
|
|
|
|
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) { |
|
|
|
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
double Te = T(dofs_th).mean(); |
|
|
|
double beta_rho = CalBeta(xPhys_col(i)); |
|
|
|
F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_; |
|
|
|
} |
|
|
|
Eigen::VectorXd F = Eigen::VectorXd(sp_mech_top3d_->F_) + F_th; |
|
|
|
sp_mech_top3d_->IntroduceFixedDofs(sp_mech_top3d_->K_, F); |
|
|
|
#ifdef USE_SUITESPARSE |
|
|
|
Eigen::CholmodSupernodalLLT<Eigen::SparseMatrix<double>> solver; |
|
|
|
#else |
|
|
|
Eigen::SimplicialLLT<Eigen::SparseMatrix<double>> solver; |
|
|
|
#endif |
|
|
|
solver.compute(sp_mech_top3d_->K_); |
|
|
|
sp_mech_top3d_->U_ = solver.solve(F); |
|
|
|
|
|
|
|
|
|
|
|
// compliance
|
|
|
|
Eigen::VectorXd ce(sp_mesh_->GetNumEles()); |
|
|
|
for (int i = 0; i < sp_mesh_->GetNumEles(); ++i) { |
|
|
|
Eigen::VectorXi dofs_in_ele_i = sp_mesh_->MapEleId2Dofs(i); |
|
|
|
Eigen::VectorXd Ue = sp_mech_top3d_->U_(dofs_in_ele_i); |
|
|
|
ce(i) = Ue.transpose() * sp_mech_top3d_->Ke_ * Ue; |
|
|
|
} |
|
|
|
double c = |
|
|
|
ce.transpose() * CalE_Vec(xPhys_col); |
|
|
|
double v = flg_chosen ? xPhys_col(chosen_ele_id).sum() : xPhys_col.sum(); |
|
|
|
|
|
|
|
// sensitivity
|
|
|
|
// lambda_m
|
|
|
|
Eigen::VectorXd lambda_m = -sp_mech_top3d_->U_; |
|
|
|
// dFth_drho
|
|
|
|
Eigen::SparseMatrix<double> dFth_drho(sp_mech_top3d_->sp_mesh_->GetNumEles(), |
|
|
|
sp_mech_top3d_->sp_mesh_->GetNumDofs()); |
|
|
|
Eigen::VectorXd v_dFth_drho(i_dFth_drho_.size()); |
|
|
|
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) { |
|
|
|
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
double Te = T(dofs_th).mean(); |
|
|
|
// double beta_rho = CalBeta(xPhys_col(i));
|
|
|
|
// F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
|
|
|
|
Eigen::VectorXd ele_dFth_drho = |
|
|
|
CalDBetaDrho(xPhys_col(i)) * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;// 24x1
|
|
|
|
assert(ele_dFth_drho.size() == 24); |
|
|
|
v_dFth_drho(Eigen::seqN(i * ele_dFth_drho.rows(), ele_dFth_drho.size())) = ele_dFth_drho; |
|
|
|
} |
|
|
|
auto v_dFth_drho_tri = Vec2Triplet(i_dFth_drho_, j_dFth_drho_, v_dFth_drho); |
|
|
|
dFth_drho.setFromTriplets(v_dFth_drho_tri.begin(), v_dFth_drho_tri.end()); |
|
|
|
|
|
|
|
// dFth_dT
|
|
|
|
Eigen::SparseMatrix<double> dFth_dT(sp_thermal_top3d_->sp_mesh_->GetNumDofs(), |
|
|
|
sp_mech_top3d_->sp_mesh_->GetNumDofs()); |
|
|
|
Eigen::VectorXd v_dFth_dT(i_dFth_dT_.size()); |
|
|
|
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) { |
|
|
|
Eigen::VectorXi dofs_th = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
Eigen::VectorXi dofs_m = sp_mech_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
double beta_rho = CalBeta(xPhys_col(i)); |
|
|
|
// F_th(dofs_m) += beta_rho * (Te - sp_mech_top3d_->sp_para_->T_ref) * Inted_;
|
|
|
|
Eigen::MatrixXd ele_dFth_dT = |
|
|
|
Eigen::VectorXd::Ones(dofs_th.size()) * 1.0 / 8.0 * beta_rho * Inted_.transpose(); |
|
|
|
assert(ele_dFth_dT.rows() == 8 && ele_dFth_dT.cols() == 24); |
|
|
|
v_dFth_dT(Eigen::seqN(i * ele_dFth_dT.rows(), ele_dFth_dT.size())) = ele_dFth_dT.reshaped(); |
|
|
|
} |
|
|
|
auto v_dFth_dT_tri = Vec2Triplet(i_dFth_dT_, j_dFth_dT_, v_dFth_dT); |
|
|
|
dFth_dT.setFromTriplets(v_dFth_dT_tri.begin(), v_dFth_dT_tri.end()); |
|
|
|
|
|
|
|
Eigen::VectorXd rhs = dFth_dT * lambda_m; |
|
|
|
for (auto dof_value: sp_thermal_top3d_->v_dofs_to_set) { |
|
|
|
auto [dof, value] = dof_value; |
|
|
|
rhs(dof) = sp_thermal_top3d_->K_.coeffRef(dof, dof) * value; |
|
|
|
} |
|
|
|
// lambda_t
|
|
|
|
Eigen::VectorXd lambda_t = solver_th.solve(rhs); |
|
|
|
// dF_drho
|
|
|
|
Eigen::SparseMatrix<double> &dF_drho = dFth_drho; |
|
|
|
// lambda_m_Mul_dKm_drho_Mul_U
|
|
|
|
Eigen::VectorXd lambda_m_Mul_dKm_drho_Mul_U = |
|
|
|
-CalDEDrho_Vec(xPhys_col).array() * ce.array(); |
|
|
|
// lambda_t_Mul_dKt_drho_Mul_T
|
|
|
|
Eigen::VectorXd ce_th(sp_thermal_top3d_->sp_mesh_->GetNumEles()); |
|
|
|
for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) { |
|
|
|
Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i); |
|
|
|
Eigen::VectorXd Te = sp_thermal_top3d_->U_(dofs_in_ele_i); |
|
|
|
Eigen::VectorXd lambda_t_e = lambda_t(dofs_in_ele_i); |
|
|
|
ce_th(i) = lambda_t_e.transpose() * sp_thermal_top3d_->Ke_ * Te; |
|
|
|
} |
|
|
|
Eigen::VectorXd lambda_t_Mul_dKt_drho_Mul_T = CalDlambdaDrho_Vec(xPhys_col).array() * ce_th.array(); |
|
|
|
// dc_drho
|
|
|
|
Eigen::VectorXd dc_drho = lambda_t_Mul_dKt_drho_Mul_T + |
|
|
|
lambda_m_Mul_dKm_drho_Mul_U + |
|
|
|
2 * Eigen::VectorXd(dF_drho * sp_mech_top3d_->U_); |
|
|
|
// Eigen::VectorXd dc_drho =
|
|
|
|
// lambda_m_Mul_dKm_drho_Mul_U +
|
|
|
|
// 2 * Eigen::VectorXd(dF_drho * sp_mech_top3d_->U_);
|
|
|
|
// dT_drho
|
|
|
|
Eigen::MatrixXd dT_drho = Eigen::MatrixXd::Zero(sp_thermal_top3d_->sp_mesh_->GetNumEles(), |
|
|
|
sp_thermal_top3d_->set_dofs_to_load.size()); |
|
|
|
for (auto it = map_ele2Limit.begin(); it != map_ele2Limit.end(); ++it) { |
|
|
|
auto [ele_id, v_limited] = *it; |
|
|
|
Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(ele_id); |
|
|
|
Eigen::VectorXd dKe_th_Mul_T = |
|
|
|
CalDlambdaDrho(xPhys_col(ele_id)) * sp_thermal_top3d_->Ke_ * T(dofs_in_ele_i); |
|
|
|
|
|
|
|
Eigen::MatrixXd Ke_th(sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE(), |
|
|
|
sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE()); |
|
|
|
for (int j1 = 0; j1 < Ke_th.cols(); ++j1) { |
|
|
|
for (int i1 = 0; i1 < Ke_th.rows(); ++i1) { |
|
|
|
Ke_th(i1, j1) = sp_thermal_top3d_->K_.coeffRef(i1, j1); |
|
|
|
} |
|
|
|
} |
|
|
|
Eigen::VectorXd ele_dT_drho = Ke_th.llt().solve(-dKe_th_Mul_T); |
|
|
|
for (auto &limited: v_limited) { |
|
|
|
dT_drho(ele_id, limited.idx_of_load_dof) = ele_dT_drho(limited.idx_in_ele); |
|
|
|
} |
|
|
|
} |
|
|
|
// for (int i = 0; i < sp_thermal_top3d_->sp_mesh_->GetNumEles(); ++i) {
|
|
|
|
// Eigen::VectorXi dofs_in_ele_i = sp_thermal_top3d_->sp_mesh_->MapEleId2Dofs(i);
|
|
|
|
// Eigen::VectorXd dKe_th_Mul_T =
|
|
|
|
// CalDlambdaDrho(xPhys_col(i)) * sp_thermal_top3d_->Ke_ * T(dofs_in_ele_i);
|
|
|
|
// Eigen::MatrixXd Ke_th(sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE(),
|
|
|
|
// sp_thermal_top3d_->sp_mesh_->Get_DOFS_EACH_ELE());
|
|
|
|
// for (int j1 = 0; j1 < Ke_th.cols(); ++j1) {
|
|
|
|
// for (int i1 = 0; i1 < Ke_th.rows(); ++i1) {
|
|
|
|
// Ke_th(i1, j1) = sp_thermal_top3d_->K_.coeffRef(i1, j1);
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
// Eigen::VectorXd ele_dT_drho = Ke_th.llt().solve(-dKe_th_Mul_T);
|
|
|
|
// dT_drho(i, dofs_in_ele_i) = ele_dT_drho.transpose();
|
|
|
|
// }
|
|
|
|
// for (auto dof_value: sp_thermal_top3d_->v_dofs_to_set) {
|
|
|
|
// auto [dof, value] = dof_value;
|
|
|
|
// dT_drho.col(dof).setZero();
|
|
|
|
// }
|
|
|
|
|
|
|
|
// dc_dx
|
|
|
|
Eigen::VectorXd dc_dx = drho_dx_ * dc_drho; |
|
|
|
// dT_dx
|
|
|
|
Eigen::MatrixXd dT_dx = drho_dx_ * dT_drho; |
|
|
|
|
|
|
|
// mma solver
|
|
|
|
size_t num_constraints = |
|
|
|
1 + dT_dx.cols();// volume and temperature constraints
|
|
|
|
size_t num_variables = flg_chosen ? chosen_ele_id.size() : sp_mesh_->GetNumEles(); |
|
|
|
auto mma = std::make_shared<MMASolver>(num_variables, num_constraints); |
|
|
|
Eigen::VectorXd variables_tmp = flg_chosen ? xPhys_col(chosen_ele_id) : xPhys_col; |
|
|
|
double f0val = c; |
|
|
|
Eigen::VectorXd df0dx = flg_chosen |
|
|
|
? dc_dx(chosen_ele_id).eval() / dc_dx(chosen_ele_id).cwiseAbs().maxCoeff() |
|
|
|
: dc_dx / dc_dx.cwiseAbs().maxCoeff(); |
|
|
|
// double fval = v - num_variables * sp_para_->volfrac;
|
|
|
|
Eigen::VectorXd fval = (Eigen::VectorXd(num_constraints) << (v / num_variables - sp_para_->volfrac), |
|
|
|
T(v_dof).array() / sp_para_->T_limit - 1).finished(); |
|
|
|
// Eigen::VectorXd dfdx = flg_chosen ? dv(chosen_ele_id) : dv;
|
|
|
|
Eigen::MatrixXd dfdx = (Eigen::MatrixXd(num_variables, num_constraints) |
|
|
|
<< 1.0 / num_variables * dv, 1.0 / sp_para_->T_limit * dT_dx).finished().transpose(); |
|
|
|
static Eigen::VectorXd low_bounds = Eigen::VectorXd::Zero(num_variables); |
|
|
|
static Eigen::VectorXd up_bounds = Eigen::VectorXd::Ones(num_variables); |
|
|
|
|
|
|
|
// spdlog::info("mma update");
|
|
|
|
mma->Update(variables_tmp.data(), df0dx.data(), fval.data(), dfdx.data(), low_bounds.data(), |
|
|
|
up_bounds.data()); |
|
|
|
if (flg_chosen) { |
|
|
|
change = (variables_tmp - xPhys_col(chosen_ele_id)).cwiseAbs().maxCoeff(); |
|
|
|
xPhys_col(chosen_ele_id) = variables_tmp; |
|
|
|
} else { |
|
|
|
change = (variables_tmp - xPhys_col).cwiseAbs().maxCoeff(); |
|
|
|
xPhys_col = variables_tmp; |
|
|
|
} |
|
|
|
|
|
|
|
spdlog::critical("Iter: {:3d}, Comp: {:.3e}, Vol: {:.2f}, Change: {:f}", loop, c, v, change); |
|
|
|
std::cout << fval.transpose() << std::endl; |
|
|
|
#ifdef WRITE_TENSOR_IN_LOOP |
|
|
|
// extract vtk
|
|
|
|
ele_to_write(pixel_idx) = xPhys_col; |
|
|
|
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1); |
|
|
|
for (int i = 0; i < ele_to_write.size(); ++i) { |
|
|
|
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i); |
|
|
|
} |
|
|
|
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{ |
|
|
|
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()}); |
|
|
|
top::WriteTensorToVtk( |
|
|
|
da::WorkingResultDirectoryPath() / ("field_matrix" + std::to_string(loop) + ".vtk"), |
|
|
|
ten_xPhys_to_write, sp_mesh_); |
|
|
|
#endif |
|
|
|
} |
|
|
|
// result
|
|
|
|
sp_mech_top3d_->rho_ = xPhys_col; |
|
|
|
// set 0 to rho of unchosen part
|
|
|
|
assert(xPhys_col.size()); |
|
|
|
Eigen::VectorXi continue_idx = |
|
|
|
Eigen::VectorXi::LinSpaced(xPhys_col.size(), 0, xPhys_col.size() - 1); |
|
|
|
Eigen::VectorXi unchosen_idx = flg_chosen ? SetDifference(continue_idx, chosen_ele_id) : Eigen::VectorXi(); |
|
|
|
{ |
|
|
|
xPhys_col(unchosen_idx).setZero(); |
|
|
|
ele_to_write(pixel_idx) = xPhys_col; |
|
|
|
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1); |
|
|
|
for (int i = 0; i < ele_to_write.size(); ++i) { |
|
|
|
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i); |
|
|
|
} |
|
|
|
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{ |
|
|
|
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()}); |
|
|
|
sp_mech_top3d_->rho_field_zero_filled_ = ten_xPhys_to_write; |
|
|
|
} |
|
|
|
|
|
|
|
{ |
|
|
|
xPhys_col(unchosen_idx).setOnes(); |
|
|
|
ele_to_write(pixel_idx) = xPhys_col; |
|
|
|
Tensor3d ten_xPhys_to_write(sp_mesh_->GetLx() * sp_mesh_->GetLy() * sp_mesh_->GetLz(), 1, 1); |
|
|
|
for (int i = 0; i < ele_to_write.size(); ++i) { |
|
|
|
ten_xPhys_to_write(i, 0, 0) = ele_to_write(i); |
|
|
|
} |
|
|
|
ten_xPhys_to_write = ten_xPhys_to_write.reshape(Eigen::array<Eigen::DenseIndex, 3>{ |
|
|
|
sp_mesh_->GetLx(), sp_mesh_->GetLy(), sp_mesh_->GetLz()}); |
|
|
|
sp_mech_top3d_->rho_field_one_filled_ = ten_xPhys_to_write; |
|
|
|
} |
|
|
|
|
|
|
|
return sp_mech_top3d_->rho_field_zero_filled_; |
|
|
|
} |
|
|
|
Tensor3d TopOptMainLoop(); |
|
|
|
|
|
|
|
Eigen::VectorXd GetU() const { |
|
|
|
return sp_thermal_top3d_->GetU(); |
|
|
|