You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

116 lines
3.7 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2019 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "rigid_alignment.h"
#include <Eigen/Sparse>
#include <Eigen/QR>
// Not currently used. See below.
//#include <Eigen/Cholesky>
#include <vector>
#include <iostream>
template <
typename DerivedX,
typename DerivedP,
typename DerivedN,
typename DerivedR,
typename Derivedt
>
IGL_INLINE void igl::rigid_alignment(
const Eigen::MatrixBase<DerivedX> & _X,
const Eigen::MatrixBase<DerivedP> & P,
const Eigen::MatrixBase<DerivedN> & N,
Eigen::PlainObjectBase<DerivedR> & R,
Eigen::PlainObjectBase<Derivedt> & t)
{
typedef typename DerivedX::Scalar Scalar;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> MatrixXS;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> VectorXS;
typedef Eigen::Matrix<Scalar,3,3> Matrix3S;
const int k = _X.rows();
VectorXS Z = VectorXS::Zero(k,1);
VectorXS I = VectorXS::Ones(k,1);
DerivedX X = _X;
R = DerivedR::Identity(3,3);
t = Derivedt::Zero(1,3);
// See gptoolbox, each iter could be O(1) instead of O(k)
const int max_iters = 5;
// Weight on point-to-point regularization.
Scalar w = 1e-5;
for(int iters = 0;iters<max_iters;iters++)
{
MatrixXS A(k*3,6);
A <<
Z, X.col(2),-X.col(1),I,Z,Z,
-X.col(2), Z, X.col(0),Z,I,Z,
X.col(1),-X.col(0), Z,Z,Z,I;
VectorXS B(k*3,1);
B<<
P.col(0)-X.col(0),
P.col(1)-X.col(1),
P.col(2)-X.col(2);
std::vector<Eigen::Triplet<Scalar> > NNIJV;
for(int i = 0;i<k;i++)
{
for(int c = 0;c<3;c++)
{
NNIJV.emplace_back(i,i+k*c,N(i,c));
}
}
Eigen::SparseMatrix<Scalar> NN(k,k*3);
NN.setFromTriplets(NNIJV.begin(),NNIJV.end());
MatrixXS NA = (NN * A).eval();
VectorXS NB = (NN * B).eval();
MatrixXS Q = (1.0-w)*(NA.transpose() * NA) + w * A.transpose() * A;
VectorXS f = (1.0-w)*(NA.transpose() * NB) + w * A.transpose() * B;
// This could be a lot faster but isn't rank revealing and may produce wonky
// results when P and N are all the same point and vector.
//VectorXS u = (Q).ldlt().solve(f);
Eigen::CompleteOrthogonalDecomposition<decltype(Q)> qr(Q);
if(qr.rank() < 6)
{
w = 1.0-(1.0-w)/2.0;
}
VectorXS u = qr.solve(f);
Derivedt ti = u.tail(3).transpose();
Matrix3S W;
W<<
0, u(2),-u(1),
-u(2), 0, u(0),
u(1),-u(0), 0;
// strayed from a perfect rotation. Correct it.
const double x = u.head(3).stableNorm();
DerivedR Ri;
if(x == 0)
{
Ri = DerivedR::Identity(3,3);
}else
{
Ri =
DerivedR::Identity(3,3) +
sin(x)/x*W +
(1.0-cos(x))/(x*x)*W*W;
}
R = (R*Ri).eval();
t = (t*Ri + ti).eval();
X = ((_X*R).rowwise()+t).eval();
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::rigid_alignment<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, 3, 3, 0, 3, 3>, Eigen::Matrix<double, 1, 3, 1, 1, 3> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, 3, 3, 0, 3, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, 1, 3, 1, 1, 3> >&);
#endif