You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
387 lines
15 KiB
387 lines
15 KiB
1 year ago
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2015 Qingnan Zhou <qnzhou@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
//
|
||
|
#include "extract_cells.h"
|
||
|
#include "extract_cells_single_component.h"
|
||
|
#include "closest_facet.h"
|
||
|
#include "outer_facet.h"
|
||
|
#include "submesh_aabb_tree.h"
|
||
|
#include "../../extract_manifold_patches.h"
|
||
|
#include "../../facet_components.h"
|
||
|
#include "../../IGL_ASSERT.h"
|
||
|
#include "../../parallel_for.h"
|
||
|
#include "../../get_seconds.h"
|
||
|
#include "../../triangle_triangle_adjacency.h"
|
||
|
#include "../../unique_edge_map.h"
|
||
|
#include "../../C_STR.h"
|
||
|
#include "../../vertex_triangle_adjacency.h"
|
||
|
|
||
|
#include <CGAL/AABB_tree.h>
|
||
|
#include <CGAL/AABB_traits.h>
|
||
|
#include <CGAL/AABB_triangle_primitive.h>
|
||
|
#include <CGAL/intersections.h>
|
||
|
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
#include <queue>
|
||
|
#include <map>
|
||
|
#include <set>
|
||
|
|
||
|
//#define EXTRACT_CELLS_TIMING
|
||
|
|
||
|
template<
|
||
|
typename DerivedV,
|
||
|
typename DerivedF,
|
||
|
typename DerivedC >
|
||
|
IGL_INLINE size_t igl::copyleft::cgal::extract_cells(
|
||
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
||
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
||
|
Eigen::PlainObjectBase<DerivedC>& cells)
|
||
|
{
|
||
|
const size_t num_faces = F.rows();
|
||
|
// Construct edge adjacency
|
||
|
Eigen::MatrixXi E, uE;
|
||
|
Eigen::VectorXi EMAP;
|
||
|
Eigen::VectorXi uEC,uEE;
|
||
|
igl::unique_edge_map(F, E, uE, EMAP, uEC, uEE);
|
||
|
// Cluster into manifold patches
|
||
|
Eigen::VectorXi P;
|
||
|
igl::extract_manifold_patches(F, EMAP, uEC, uEE, P);
|
||
|
// Extract cells
|
||
|
DerivedC per_patch_cells;
|
||
|
const size_t ncells = extract_cells(V,F,P,uE,EMAP,uEC,uEE,per_patch_cells);
|
||
|
// Distribute per-patch cell information to each face
|
||
|
cells.resize(num_faces, 2);
|
||
|
for (size_t i=0; i<num_faces; i++)
|
||
|
{
|
||
|
cells.row(i) = per_patch_cells.row(P[i]);
|
||
|
}
|
||
|
return ncells;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<
|
||
|
typename DerivedV,
|
||
|
typename DerivedF,
|
||
|
typename DerivedP,
|
||
|
typename DeriveduE,
|
||
|
typename DerivedEMAP,
|
||
|
typename DeriveduEC,
|
||
|
typename DeriveduEE,
|
||
|
typename DerivedC >
|
||
|
IGL_INLINE size_t igl::copyleft::cgal::extract_cells(
|
||
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
||
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
||
|
const Eigen::PlainObjectBase<DerivedP>& P,
|
||
|
const Eigen::PlainObjectBase<DeriveduE>& uE,
|
||
|
const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
|
||
|
const Eigen::PlainObjectBase<DeriveduEC>& uEC,
|
||
|
const Eigen::PlainObjectBase<DeriveduEE>& uEE,
|
||
|
Eigen::PlainObjectBase<DerivedC>& cells)
|
||
|
{
|
||
|
// Trivial base case
|
||
|
if(P.size() == 0)
|
||
|
{
|
||
|
assert(F.size() == 0);
|
||
|
cells.resize(0,2);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
|
||
|
|
||
|
#ifdef EXTRACT_CELLS_TIMING
|
||
|
const auto & tictoc = []() -> double
|
||
|
{
|
||
|
static double t_start = igl::get_seconds();
|
||
|
double diff = igl::get_seconds()-t_start;
|
||
|
t_start += diff;
|
||
|
return diff;
|
||
|
};
|
||
|
const auto log_time = [&](const std::string& label) -> void {
|
||
|
printf("%50s: %0.5lf\n",
|
||
|
C_STR("extract_cells." << label),tictoc());
|
||
|
};
|
||
|
tictoc();
|
||
|
#else
|
||
|
// no-op
|
||
|
const auto log_time = [](const std::string){};
|
||
|
#endif
|
||
|
const size_t num_faces = F.rows();
|
||
|
typedef typename DerivedF::Scalar Index;
|
||
|
assert(P.size() > 0);
|
||
|
const size_t num_patches = P.maxCoeff()+1;
|
||
|
|
||
|
// Extract all cells...
|
||
|
DerivedC raw_cells;
|
||
|
const int num_raw_cells =
|
||
|
extract_cells_single_component(V,F,P,uE,uEC,uEE,raw_cells);
|
||
|
log_time("extract_cells_single_component");
|
||
|
|
||
|
// Compute triangle-triangle adjacency data-structure
|
||
|
std::vector<std::vector<std::vector<Index > > > TT,_1;
|
||
|
igl::triangle_triangle_adjacency(EMAP, uEC, uEE, false, TT, _1);
|
||
|
log_time("compute_face_adjacency");
|
||
|
|
||
|
// Compute connected components of the mesh
|
||
|
Eigen::VectorXi C, counts;
|
||
|
igl::facet_components(TT, C, counts);
|
||
|
log_time("form_components");
|
||
|
|
||
|
const size_t num_components = counts.size();
|
||
|
// components[c] --> list of face indices into F of faces in component c
|
||
|
std::vector<std::vector<size_t> > components(num_components);
|
||
|
// Loop over all faces
|
||
|
for (size_t i=0; i<num_faces; i++)
|
||
|
{
|
||
|
components[C[i]].push_back(i);
|
||
|
}
|
||
|
// Convert vector lists to Eigen lists...
|
||
|
// and precompute data-structures for each component
|
||
|
std::vector<std::vector<size_t> > VF,VFi;
|
||
|
igl::vertex_triangle_adjacency(V.rows(), F, VF, VFi);
|
||
|
std::vector<Eigen::VectorXi> Is(num_components);
|
||
|
std::vector<
|
||
|
CGAL::AABB_tree<
|
||
|
CGAL::AABB_traits<
|
||
|
Kernel,
|
||
|
CGAL::AABB_triangle_primitive<
|
||
|
Kernel, std::vector<
|
||
|
Kernel::Triangle_3 >::iterator > > > > trees(num_components);
|
||
|
std::vector< std::vector<Kernel::Triangle_3 > >
|
||
|
triangle_lists(num_components);
|
||
|
// O(num_components * num_faces)
|
||
|
// In general, extract_cells appears to have O(num_components * num_faces)
|
||
|
// performance. This could be painfully tested by a processing a cloud of
|
||
|
// tetrahedra.
|
||
|
std::vector<std::vector<bool> > in_Is(num_components);
|
||
|
|
||
|
// Find outer facets, their orientations and cells for each component
|
||
|
Eigen::VectorXi outer_facets(num_components);
|
||
|
Eigen::VectorXi outer_facet_orientation(num_components);
|
||
|
Eigen::VectorXi outer_cells(num_components);
|
||
|
igl::parallel_for(num_components,[&](size_t i)
|
||
|
{
|
||
|
Is[i].resize(components[i].size());
|
||
|
std::copy(components[i].begin(), components[i].end(),Is[i].data());
|
||
|
bool flipped;
|
||
|
igl::copyleft::cgal::outer_facet(V, F, Is[i], outer_facets[i], flipped);
|
||
|
outer_facet_orientation[i] = flipped?1:0;
|
||
|
outer_cells[i] = raw_cells(P[outer_facets[i]], outer_facet_orientation[i]);
|
||
|
},1000);
|
||
|
#ifdef EXTRACT_CELLS_TIMING
|
||
|
log_time("outer_facet_per_component");
|
||
|
#endif
|
||
|
|
||
|
// Compute barycenter of a triangle in mesh (V,F)
|
||
|
//
|
||
|
// Inputs:
|
||
|
// fid index into F
|
||
|
// Returns row-vector of barycenter coordinates
|
||
|
const auto get_triangle_center = [&V,&F](const size_t fid)
|
||
|
{
|
||
|
return ((V.row(F(fid,0))+V.row(F(fid,1))+V.row(F(fid,2)))/3.0).eval();
|
||
|
};
|
||
|
std::vector<std::vector<size_t> > nested_cells(num_raw_cells);
|
||
|
std::vector<std::vector<size_t> > ambient_cells(num_raw_cells);
|
||
|
std::vector<std::vector<size_t> > ambient_comps(num_components);
|
||
|
// Only bother if there's more than one component
|
||
|
if(num_components > 1)
|
||
|
{
|
||
|
// construct bounding boxes for each component
|
||
|
DerivedV bbox_min(num_components, 3);
|
||
|
DerivedV bbox_max(num_components, 3);
|
||
|
// Assuming our mesh (in exact numbers) fits in the range of double.
|
||
|
bbox_min.setConstant(std::numeric_limits<double>::max());
|
||
|
bbox_max.setConstant(std::numeric_limits<double>::lowest());
|
||
|
// Loop over faces
|
||
|
for (size_t i=0; i<num_faces; i++)
|
||
|
{
|
||
|
// component of this face
|
||
|
const auto comp_id = C[i];
|
||
|
const auto& f = F.row(i);
|
||
|
for (size_t j=0; j<3; j++)
|
||
|
{
|
||
|
for(size_t d=0;d<3;d++)
|
||
|
{
|
||
|
bbox_min(comp_id,d) = std::min(bbox_min(comp_id,d), V(f[j],d));
|
||
|
bbox_max(comp_id,d) = std::max(bbox_max(comp_id,d), V(f[j],d));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Return true if box of component ci intersects that of cj
|
||
|
const auto bbox_intersects = [&bbox_max,&bbox_min](size_t ci, size_t cj)
|
||
|
{
|
||
|
return !(
|
||
|
bbox_max(ci,0) < bbox_min(cj,0) ||
|
||
|
bbox_max(ci,1) < bbox_min(cj,1) ||
|
||
|
bbox_max(ci,2) < bbox_min(cj,2) ||
|
||
|
bbox_max(cj,0) < bbox_min(ci,0) ||
|
||
|
bbox_max(cj,1) < bbox_min(ci,1) ||
|
||
|
bbox_max(cj,2) < bbox_min(ci,2));
|
||
|
};
|
||
|
|
||
|
// Loop over components. This section is O(m²)
|
||
|
for (size_t i=0; i<num_components; i++)
|
||
|
{
|
||
|
// List of components that could overlap with component i
|
||
|
std::vector<size_t> candidate_comps;
|
||
|
candidate_comps.reserve(num_components);
|
||
|
// Loop over components
|
||
|
for (size_t j=0; j<num_components; j++)
|
||
|
{
|
||
|
if (i == j) continue;
|
||
|
if (bbox_intersects(i,j)) candidate_comps.push_back(j);
|
||
|
}
|
||
|
|
||
|
const size_t num_candidate_comps = candidate_comps.size();
|
||
|
if (num_candidate_comps == 0) continue;
|
||
|
|
||
|
// Build aabb tree for this component.
|
||
|
submesh_aabb_tree(V,F,Is[i],trees[i],triangle_lists[i],in_Is[i]);
|
||
|
|
||
|
// Get query points on each candidate component: barycenter of
|
||
|
// outer-facet
|
||
|
DerivedV queries(num_candidate_comps, 3);
|
||
|
for (size_t j=0; j<num_candidate_comps; j++)
|
||
|
{
|
||
|
const size_t index = candidate_comps[j];
|
||
|
queries.row(j) = get_triangle_center(outer_facets[index]);
|
||
|
}
|
||
|
|
||
|
// Gather closest facets in ith component to each query point and their
|
||
|
// orientations
|
||
|
const auto& I = Is[i];
|
||
|
const auto& tree = trees[i];
|
||
|
const auto& in_I = in_Is[i];
|
||
|
const auto& triangles = triangle_lists[i];
|
||
|
|
||
|
Eigen::VectorXi closest_facets, closest_facet_orientations;
|
||
|
closest_facet(
|
||
|
V,
|
||
|
F,
|
||
|
I,
|
||
|
queries,
|
||
|
EMAP,
|
||
|
uEC,
|
||
|
uEE,
|
||
|
VF,
|
||
|
VFi,
|
||
|
tree,
|
||
|
triangles,
|
||
|
in_I,
|
||
|
closest_facets,
|
||
|
closest_facet_orientations);
|
||
|
// Loop over all candidates
|
||
|
for (size_t j=0; j<num_candidate_comps; j++)
|
||
|
{
|
||
|
const size_t index = candidate_comps[j];
|
||
|
const size_t closest_patch = P[closest_facets[j]];
|
||
|
const size_t closest_patch_side = closest_facet_orientations[j] ? 0:1;
|
||
|
// The cell id of the closest patch
|
||
|
const size_t ambient_cell =
|
||
|
raw_cells(closest_patch,closest_patch_side);
|
||
|
if (ambient_cell != (size_t)outer_cells[i])
|
||
|
{
|
||
|
// ---> component index inside component i, because the cell of the
|
||
|
// closest facet on i to component index is **not** the same as the
|
||
|
// "outer cell" of component i: component index is **not** outside of
|
||
|
// component i (therefore it's inside).
|
||
|
nested_cells[ambient_cell].push_back(outer_cells[index]);
|
||
|
ambient_cells[outer_cells[index]].push_back(ambient_cell);
|
||
|
ambient_comps[index].push_back(i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef EXTRACT_CELLS_TIMING
|
||
|
log_time("nested_relationship");
|
||
|
#endif
|
||
|
|
||
|
const size_t INVALID = std::numeric_limits<size_t>::max();
|
||
|
const size_t INFINITE_CELL = num_raw_cells;
|
||
|
std::vector<size_t> embedded_cells(num_raw_cells, INVALID);
|
||
|
for (size_t i=0; i<num_components; i++) {
|
||
|
const size_t outer_cell = outer_cells[i];
|
||
|
const auto& ambient_comps_i = ambient_comps[i];
|
||
|
const auto& ambient_cells_i = ambient_cells[outer_cell];
|
||
|
const size_t num_ambient_comps = ambient_comps_i.size();
|
||
|
assert(num_ambient_comps == ambient_cells_i.size());
|
||
|
if (num_ambient_comps > 0) {
|
||
|
size_t embedded_comp = INVALID;
|
||
|
size_t embedded_cell = INVALID;
|
||
|
for (size_t j=0; j<num_ambient_comps; j++) {
|
||
|
if (ambient_comps[ambient_comps_i[j]].size() ==
|
||
|
num_ambient_comps-1) {
|
||
|
embedded_comp = ambient_comps_i[j];
|
||
|
embedded_cell = ambient_cells_i[j];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
IGL_ASSERT(embedded_comp != INVALID);
|
||
|
IGL_ASSERT(embedded_cell != INVALID);
|
||
|
embedded_cells[outer_cell] = embedded_cell;
|
||
|
} else {
|
||
|
embedded_cells[outer_cell] = INFINITE_CELL;
|
||
|
}
|
||
|
}
|
||
|
for (size_t i=0; i<num_patches; i++) {
|
||
|
if (embedded_cells[raw_cells(i,0)] != INVALID) {
|
||
|
raw_cells(i,0) = embedded_cells[raw_cells(i, 0)];
|
||
|
}
|
||
|
if (embedded_cells[raw_cells(i,1)] != INVALID) {
|
||
|
raw_cells(i,1) = embedded_cells[raw_cells(i, 1)];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
size_t count = 0;
|
||
|
std::vector<size_t> mapped_indices(num_raw_cells+1, INVALID);
|
||
|
// Always map infinite cell to index 0.
|
||
|
mapped_indices[INFINITE_CELL] = count;
|
||
|
count++;
|
||
|
|
||
|
for (size_t i=0; i<num_patches; i++) {
|
||
|
const size_t old_positive_cell_id = raw_cells(i, 0);
|
||
|
const size_t old_negative_cell_id = raw_cells(i, 1);
|
||
|
size_t positive_cell_id, negative_cell_id;
|
||
|
if (mapped_indices[old_positive_cell_id] == INVALID) {
|
||
|
mapped_indices[old_positive_cell_id] = count;
|
||
|
positive_cell_id = count;
|
||
|
count++;
|
||
|
} else {
|
||
|
positive_cell_id = mapped_indices[old_positive_cell_id];
|
||
|
}
|
||
|
if (mapped_indices[old_negative_cell_id] == INVALID) {
|
||
|
mapped_indices[old_negative_cell_id] = count;
|
||
|
negative_cell_id = count;
|
||
|
count++;
|
||
|
} else {
|
||
|
negative_cell_id = mapped_indices[old_negative_cell_id];
|
||
|
}
|
||
|
raw_cells(i, 0) = positive_cell_id;
|
||
|
raw_cells(i, 1) = negative_cell_id;
|
||
|
}
|
||
|
cells = raw_cells;
|
||
|
#ifdef EXTRACT_CELLS_TIMING
|
||
|
log_time("finalize");
|
||
|
#endif
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||
|
// Explicit template instantiation
|
||
|
// generated by autoexplicit.sh
|
||
|
template size_t igl::copyleft::cgal::extract_cells<Eigen::Matrix<CGAL::Epeck::FT, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Epeck::FT, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
||
|
template size_t igl::copyleft::cgal::extract_cells<Eigen::Matrix<CGAL::Epeck::FT, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Epeck::FT, -1, -1, 1, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
||
|
template size_t igl::copyleft::cgal::extract_cells<Eigen::Matrix<CGAL::Epeck::FT, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Epeck::FT, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
||
|
#ifdef WIN32
|
||
|
#endif
|
||
|
#endif
|