You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
2.7 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2017 Daniele Panozzo <daniele.panozzo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_ATA_CACHED_H
#define IGL_ATA_CACHED_H
#include "igl_inline.h"
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
#include <Eigen/Dense>
#include <Eigen/Sparse>
namespace igl
{
/// Hold precomputed data for AtA_cached
struct AtA_cached_data
{
/// Weights (diagonal of W)
Eigen::VectorXd W;
// Flatten composition rules
/// @private
std::vector<int> I_row;
/// @private
std::vector<int> I_col;
/// @private
std::vector<int> I_w;
// For each entry of AtA, points to the beginning
// of the composition rules
/// @private
std::vector<int> I_outer;
};
/// Computes At * W * A, where A is sparse and W is diagonal.
///
/// Divides the construction in two phases, one for fixing the sparsity
/// pattern, and one to populate it with values. Compared to evaluating it
/// directly, this version is slower for the first time (since it requires a
/// precomputation), but faster to the subsequent evaluations.
///
/// @param[in] A m x n sparse matrix
/// @param[in,out] data stores the precomputed sparsity pattern, data.W contains the optional diagonal weights (stored as a dense vector). If W is not provided, it is replaced by the identity.
/// @param[out] AtA m by m matrix computed as AtA * W * A
///
/// #### Example:
///
/// \code{cpp}
/// AtA_data = igl::AtA_cached_data();
/// AtA_data.W = W;
/// if (s.AtA.rows() == 0)
/// igl::AtA_cached_precompute(s.A,s.AtA_data,s.AtA);
/// else
/// igl::AtA_cached(s.A,s.AtA_data,s.AtA);
/// \endcode
template <typename Scalar>
IGL_INLINE void AtA_cached_precompute(
const Eigen::SparseMatrix<Scalar>& A,
AtA_cached_data& data,
Eigen::SparseMatrix<Scalar>& AtA
);
/// Computes At * W * A, where A is sparse and W is diagonal precomputed into data.
///
/// @param[in] A m x n sparse matrix
/// @param[in] data stores the precomputed sparsity pattern, data.W contains the optional diagonal weights (stored as a dense vector). If W is not provided, it is replaced by the identity.
/// @param[out] AtA m by m matrix computed as AtA * W * A
template <typename Scalar>
IGL_INLINE void AtA_cached(
const Eigen::SparseMatrix<Scalar>& A,
const AtA_cached_data& data,
Eigen::SparseMatrix<Scalar>& AtA
);
}
#ifndef IGL_STATIC_LIBRARY
# include "AtA_cached.cpp"
#endif
#endif