By the way, this procedure realized the thermo-elastic TO(topology optimization)([Thermo-elastic topology optimization with stress
and temperature constraints.](ref%2FThermo-elastic%20topology%20optimization%20with%20stress%0Aand%20temperature%20constraints), mechanical TO([top3d.pdf](ref%2Ftop3d.pdf)) and corresponding simulations.
1. Use `example/top-thermolastic-compare-3d` to run mechanical(Me)/mechanical thermal(MeTh) topology optimization(Top) and simulation(Sim).
The procedure run in following order:
1. Me Top & MeTh Top -> density(*_MeTop_rho.vtk & *_MethTop_rho.vtk) and compliance/volume each iteration(*_MeTop_compliance.txt *_MeTop_volume.txt & ...)
2. clamp density by different threshold(.XX) -> 0/1 density(*_MeSim_threshXX_rho.vtk & *_MeThSim_threshXX_rho.vtk)
3. MeTh Sim -> temperature(*_T.vtk), displacement(*_U.vtk), Von Mise Stress(*_von_stress.vtk).
1. Set parameters in *.json. see comments in `assets/top-thermoelastic-*.json`(see comments in `assets/config_biclamed.json` and ref paper for MeTh parameters; see comments in `assets/top/config_Lshape.json`)
3. you can modify the linear solver arguments `prm.solver.tol` and `prm.solver.maxiter` in `src/LinearSolver/Amgcl.h` or `src/LinearSolver/AmgclCuda.h`.