You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

425 lines
13 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "uniformly_sample_two_manifold.h"
#include "verbose.h"
#include "colon.h"
#include "all_pairs_distances.h"
#include "vertex_triangle_adjacency.h"
#include "get_seconds.h"
#include "cat.h"
//#include "MT19937.h"
#include "partition.h"
//////////////////////////////////////////////////////////////////////////////
// Helper functions
//////////////////////////////////////////////////////////////////////////////
IGL_INLINE void igl::uniformly_sample_two_manifold(
const Eigen::MatrixXd & W,
const Eigen::MatrixXi & F,
const int k,
const double push,
Eigen::MatrixXd & WS)
{
using namespace Eigen;
using namespace std;
// Euclidean distance between two points on a mesh given as barycentric
// coordinates
// Inputs:
// W #W by dim positions of mesh in weight space
// F #F by 3 indices of triangles
// face_A face index where 1st point lives
// bary_A barycentric coordinates of 1st point on face_A
// face_B face index where 2nd point lives
// bary_B barycentric coordinates of 2nd point on face_B
// Returns distance in euclidean space
const auto & bary_dist = [] (
const Eigen::MatrixXd & W,
const Eigen::MatrixXi & F,
const int face_A,
const Eigen::Vector3d & bary_A,
const int face_B,
const Eigen::Vector3d & bary_B) -> double
{
return
((bary_A(0)*W.row(F(face_A,0)) +
bary_A(1)*W.row(F(face_A,1)) +
bary_A(2)*W.row(F(face_A,2)))
-
(bary_B(0)*W.row(F(face_B,0)) +
bary_B(1)*W.row(F(face_B,1)) +
bary_B(2)*W.row(F(face_B,2)))).norm();
};
// Base case if F is a tet list, find all faces and pass as non-manifold
// triangle mesh
if(F.cols() == 4)
{
verbose("uniform_sample.h: sampling tet mesh\n");
MatrixXi T0 = F.col(0);
MatrixXi T1 = F.col(1);
MatrixXi T2 = F.col(2);
MatrixXi T3 = F.col(3);
// Faces from tets
MatrixXi TF =
cat(1,
cat(1,
cat(2,T0, cat(2,T1,T2)),
cat(2,T0, cat(2,T2,T3))),
cat(1,
cat(2,T0, cat(2,T3,T1)),
cat(2,T1, cat(2,T3,T2)))
);
assert(TF.rows() == 4*F.rows());
assert(TF.cols() == 3);
uniformly_sample_two_manifold(W,TF,k,push,WS);
return;
}
double start = get_seconds();
VectorXi S;
// First get sampling as best as possible on mesh
uniformly_sample_two_manifold_at_vertices(W,k,push,S);
verbose("Lap: %g\n",get_seconds()-start);
WS = W(S,Eigen::all);
//cout<<"WSmesh=["<<endl<<WS<<endl<<"];"<<endl;
//#ifdef EXTREME_VERBOSE
//cout<<"S=["<<endl<<S<<endl<<"];"<<endl;
//#endif
// Build map from vertices to list of incident faces
vector<vector<int> > VF,VFi;
vertex_triangle_adjacency(W,F,VF,VFi);
// List of list of face indices, for each sample gives index to face it is on
vector<vector<int> > sample_faces; sample_faces.resize(k);
// List of list of barycentric coordinates, for each sample gives b-coords in
// face its on
vector<vector<Eigen::Vector3d> > sample_barys; sample_barys.resize(k);
// List of current maxmins amongst samples
vector<int> cur_maxmin; cur_maxmin.resize(k);
// List of distance matrices, D(i)(s,j) reveals distance from i's sth sample
// to jth seed if j<k or (j-k)th "pushed" corner
vector<MatrixXd> D; D.resize(k);
// Precompute an W.cols() by W.cols() identity matrix
MatrixXd I(MatrixXd::Identity(W.cols(),W.cols()));
// Describe each seed as a face index and barycentric coordinates
for(int i = 0;i < k;i++)
{
// Unreferenced vertex?
assert(VF[S(i)].size() > 0);
sample_faces[i].push_back(VF[S(i)][0]);
// We're right on a face vertex so barycentric coordinates are 0, but 1 at
// that vertex
Eigen::Vector3d bary(0,0,0);
bary( VFi[S(i)][0] ) = 1;
sample_barys[i].push_back(bary);
// initialize this to current maxmin
cur_maxmin[i] = 0;
}
// initialize radius
double radius = 1.0;
// minimum radius (bound on precision)
//double min_radius = 1e-5;
double min_radius = 1e-5;
int max_num_rand_samples_per_triangle = 100;
int max_sample_attempts_per_triangle = 1000;
// Max number of outer iterations for a given radius
int max_iters = 1000;
// continue iterating until radius is smaller than some threshold
while(radius > min_radius)
{
// initialize each seed
for(int i = 0;i < k;i++)
{
// Keep track of cur_maxmin data
int face_i = sample_faces[i][cur_maxmin[i]];
Eigen::Vector3d bary(sample_barys[i][cur_maxmin[i]]);
// Find index in face of closest mesh vertex (on this face)
int index_in_face =
(bary(0) > bary(1) ? (bary(0) > bary(2) ? 0 : 2)
: (bary(1) > bary(2) ? 1 : 2));
// find closest mesh vertex
int vertex_i = F(face_i,index_in_face);
// incident triangles
vector<int> incident_F = VF[vertex_i];
// We're going to try to place num_rand_samples_per_triangle samples on
// each sample *after* this location
sample_barys[i].clear();
sample_faces[i].clear();
cur_maxmin[i] = 0;
sample_barys[i].push_back(bary);
sample_faces[i].push_back(face_i);
// Current seed location in weight space
VectorXd seed =
bary(0)*W.row(F(face_i,0)) +
bary(1)*W.row(F(face_i,1)) +
bary(2)*W.row(F(face_i,2));
#ifdef EXTREME_VERBOSE
verbose("i: %d\n",i);
verbose("face_i: %d\n",face_i);
//cout<<"bary: "<<bary<<endl;
verbose("index_in_face: %d\n",index_in_face);
verbose("vertex_i: %d\n",vertex_i);
verbose("incident_F.size(): %d\n",incident_F.size());
//cout<<"seed: "<<seed<<endl;
#endif
// loop over indcident triangles
for(int f=0;f<(int)incident_F.size();f++)
{
#ifdef EXTREME_VERBOSE
verbose("incident_F[%d]: %d\n",f,incident_F[f]);
#endif
int face_f = incident_F[f];
int num_samples_f = 0;
for(int s=0;s<max_sample_attempts_per_triangle;s++)
{
// Randomly sample unit square
double u,v;
// double ru = fgenrand();
// double rv = fgenrand();
double ru = (double)rand() / RAND_MAX;
double rv = (double)rand() / RAND_MAX;
// Reflect to lower triangle if above
if((ru+rv)>1)
{
u = 1-rv;
v = 1-ru;
}else
{
u = ru;
v = rv;
}
Eigen::Vector3d sample_bary(u,v,1-u-v);
double d = bary_dist(W,F,face_i,bary,face_f,sample_bary);
// check that sample is close enough
if(d<radius)
{
// add sample to list
sample_faces[i].push_back(face_f);
sample_barys[i].push_back(sample_bary);
num_samples_f++;
}
// Keep track of which random samples came from which face
if(num_samples_f >= max_num_rand_samples_per_triangle)
{
#ifdef EXTREME_VERBOSE
verbose("Reached maximum number of samples per face\n");
#endif
break;
}
if(s==(max_sample_attempts_per_triangle-1))
{
#ifdef EXTREME_VERBOSE
verbose("Reached maximum sample attempts per triangle\n");
#endif
}
}
#ifdef EXTREME_VERBOSE
verbose("sample_faces[%d].size(): %d\n",i,sample_faces[i].size());
verbose("sample_barys[%d].size(): %d\n",i,sample_barys[i].size());
#endif
}
}
// Precompute distances from each seed's random samples to each "pushed"
// corner
// Put -1 in entries corresponding distance of a seed's random samples to
// self
// Loop over seeds
for(int i = 0;i < k;i++)
{
// resize distance matrix for new samples
D[i].resize(sample_faces[i].size(),k+W.cols());
// Loop over i's samples
for(int s = 0;s<(int)sample_faces[i].size();s++)
{
int sample_face = sample_faces[i][s];
Eigen::Vector3d sample_bary = sample_barys[i][s];
// Loop over other seeds
for(int j = 0;j < k;j++)
{
// distance from sample(i,s) to seed j
double d;
if(i==j)
{
// phony self distance: Ilya's idea of infinite
d = 10;
}else
{
int seed_j_face = sample_faces[j][cur_maxmin[j]];
Eigen::Vector3d seed_j_bary(sample_barys[j][cur_maxmin[j]]);
d = bary_dist(W,F,sample_face,sample_bary,seed_j_face,seed_j_bary);
}
D[i](s,j) = d;
}
// Loop over corners
for(int j = 0;j < W.cols();j++)
{
// distance from sample(i,s) to corner j
double d =
((sample_bary(0)*W.row(F(sample_face,0)) +
sample_bary(1)*W.row(F(sample_face,1)) +
sample_bary(2)*W.row(F(sample_face,2)))
- I.row(j)).norm()/push;
// append after distances to seeds
D[i](s,k+j) = d;
}
}
}
int iters = 0;
while(true)
{
bool has_changed = false;
// try to move each seed
for(int i = 0;i < k;i++)
{
// for each sample look at distance to closest seed/corner
VectorXd minD = D[i].rowwise().minCoeff();
assert(minD.size() == (int)sample_faces[i].size());
// find random sample with maximum minimum distance to other seeds
int old_cur_maxmin = cur_maxmin[i];
double max_min = -2;
for(int s = 0;s<(int)sample_faces[i].size();s++)
{
if(max_min < minD(s))
{
max_min = minD(s);
// Set this as the new seed location
cur_maxmin[i] = s;
}
}
#ifdef EXTREME_VERBOSE
verbose("max_min: %g\n",max_min);
verbose("cur_maxmin[%d]: %d->%d\n",i,old_cur_maxmin,cur_maxmin[i]);
#endif
// did location change?
has_changed |= (old_cur_maxmin!=cur_maxmin[i]);
// update distances of random samples of other seeds
}
// if no seed moved, exit
if(!has_changed)
{
break;
}
iters++;
if(iters>=max_iters)
{
verbose("Hit max iters (%d) before converging\n",iters);
}
}
// shrink radius
//radius *= 0.9;
//radius *= 0.99;
radius *= 0.9;
}
// Collect weight space locations
WS.resize(k,W.cols());
for(int i = 0;i<k;i++)
{
int face_i = sample_faces[i][cur_maxmin[i]];
Eigen::Vector3d bary(sample_barys[i][cur_maxmin[i]]);
WS.row(i) =
bary(0)*W.row(F(face_i,0)) +
bary(1)*W.row(F(face_i,1)) +
bary(2)*W.row(F(face_i,2));
}
verbose("Lap: %g\n",get_seconds()-start);
//cout<<"WSafter=["<<endl<<WS<<endl<<"];"<<endl;
}
IGL_INLINE void igl::uniformly_sample_two_manifold_at_vertices(
const Eigen::MatrixXd & OW,
const int k,
const double push,
Eigen::VectorXi & S)
{
using namespace Eigen;
using namespace std;
// Copy weights and faces
const MatrixXd & W = OW;
/*const MatrixXi & F = OF;*/
// Initialize seeds
VectorXi G;
Matrix<double,Dynamic,1> ignore;
partition(W,k+W.cols(),G,S,ignore);
// Remove corners, which better be at top
S = S.segment(W.cols(),k).eval();
MatrixXd WS = W(S,Eigen::all);
//cout<<"WSpartition=["<<endl<<WS<<endl<<"];"<<endl;
// number of vertices
int n = W.rows();
// number of dimensions in weight space
int m = W.cols();
// Corners of weight space
MatrixXd I = MatrixXd::Identity(m,m);
// append corners to bottom of weights
MatrixXd WI(n+m,m);
WI << W,I;
// Weights at seeds and corners
MatrixXd WSC(k+m,m);
for(int i = 0;i<k;i++)
{
WSC.row(i) = W.row(S(i));
}
for(int i = 0;i<m;i++)
{
WSC.row(i+k) = WI.row(n+i);
}
// initialize all pairs sqaured distances
MatrixXd sqrD;
all_pairs_distances(WI,WSC,true,sqrD);
// bring in corners by push factor (squared because distances are squared)
sqrD.block(0,k,sqrD.rows(),m) /= push*push;
int max_iters = 30;
int j = 0;
for(;j<max_iters;j++)
{
bool has_changed = false;
// loop over seeds
for(int i =0;i<k;i++)
{
int old_si = S(i);
// set distance to ilya's idea of infinity
sqrD.col(i).setZero();
sqrD.col(i).array() += 10;
// find vertex farthers from all other seeds
MatrixXd minsqrD = sqrD.rowwise().minCoeff();
MatrixXd::Index si,PHONY;
minsqrD.maxCoeff(&si,&PHONY);
MatrixXd Wsi = W.row(si);
MatrixXd sqrDi;
all_pairs_distances(WI,Wsi,true,sqrDi);
sqrD.col(i) = sqrDi;
S(i) = si;
has_changed |= si!=old_si;
}
if(j == max_iters)
{
verbose("uniform_sample.h: Warning: hit max iters\n");
}
if(!has_changed)
{
break;
}
}
}