You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.6 KiB
139 lines
4.6 KiB
1 year ago
|
#include "eigs.h"
|
||
|
#include "../sort.h"
|
||
|
#include "../IGL_ASSERT.h"
|
||
|
#include <Spectra/SymGEigsShiftSolver.h>
|
||
|
|
||
|
template <
|
||
|
typename EigsScalar,
|
||
|
typename DerivedU,
|
||
|
typename DerivedS,
|
||
|
typename Solver>
|
||
|
IGL_INLINE bool igl::spectra::eigs(
|
||
|
const Eigen::SparseMatrix<EigsScalar> & A,
|
||
|
const Eigen::SparseMatrix<EigsScalar> & B,
|
||
|
const int k,
|
||
|
const igl::EigsType type,
|
||
|
Eigen::PlainObjectBase<DerivedU> & U,
|
||
|
Eigen::PlainObjectBase<DerivedS> & S)
|
||
|
{
|
||
|
IGL_ASSERT(k > 0 && "k should be positive");
|
||
|
IGL_ASSERT(k < A.rows() && "k should be less than size of A");
|
||
|
IGL_ASSERT(type == igl::EIGS_TYPE_SM && "Only SM supported");
|
||
|
// This seems like a hack. For the "eigs: grid" test this is necessary to get
|
||
|
// at least 1e-4 error for the first 5 eigen values. It's annoying that this
|
||
|
// means that the zero modes become O(sigma) and this is now rather large.
|
||
|
//
|
||
|
// I wonder if this is an issue with SparseLU and if UMFPACK would be better.
|
||
|
//
|
||
|
// Ideally this value would be 0.
|
||
|
const EigsScalar sigma = 1e-8;
|
||
|
return igl::spectra::eigs(A,B,k,sigma,U,S);
|
||
|
}
|
||
|
template <
|
||
|
typename EigsScalar,
|
||
|
typename DerivedU,
|
||
|
typename DerivedS,
|
||
|
typename Solver>
|
||
|
IGL_INLINE bool igl::spectra::eigs(
|
||
|
const Eigen::SparseMatrix<EigsScalar> & A,
|
||
|
const Eigen::SparseMatrix<EigsScalar> & B,
|
||
|
const int k,
|
||
|
const EigsScalar sigma,
|
||
|
Eigen::PlainObjectBase<DerivedU> & U,
|
||
|
Eigen::PlainObjectBase<DerivedS> & S)
|
||
|
{
|
||
|
|
||
|
IGL_ASSERT(k > 0 && "k should be positive");
|
||
|
IGL_ASSERT(k < A.rows() && "k should be less than size of A");
|
||
|
|
||
|
class SparseMatProd
|
||
|
{
|
||
|
public:
|
||
|
using Scalar = EigsScalar;
|
||
|
const Eigen::SparseMatrix<Scalar> & m_B;
|
||
|
SparseMatProd(const Eigen::SparseMatrix<Scalar> & B) : m_B(B) {}
|
||
|
int rows() const { return m_B.rows(); }
|
||
|
int cols() const { return m_B.cols(); }
|
||
|
void perform_op(const Scalar *x_in, Scalar *y_out) const
|
||
|
{
|
||
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> VectorXS;
|
||
|
Eigen::Map<const VectorXS> x(x_in, m_B.cols());
|
||
|
Eigen::Map< VectorXS> y(y_out, m_B.rows());
|
||
|
y = m_B * x;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Solver must expose .compute(A) and .solve(x)
|
||
|
class ShiftInvert
|
||
|
{
|
||
|
public:
|
||
|
using Scalar = EigsScalar;
|
||
|
private:
|
||
|
const Eigen::SparseMatrix<Scalar> & m_A;
|
||
|
const Eigen::SparseMatrix<Scalar> & m_B;
|
||
|
Scalar m_sigma;
|
||
|
Solver m_solver;
|
||
|
public:
|
||
|
bool m_solver_is_successfully_factorized;
|
||
|
ShiftInvert(
|
||
|
const Eigen::SparseMatrix<Scalar>& A,
|
||
|
const Eigen::SparseMatrix<Scalar>& B,
|
||
|
const Scalar sigma):
|
||
|
m_A(A), m_B(B)
|
||
|
{
|
||
|
IGL_ASSERT(m_A.rows() == m_A.cols() && "A must be square");
|
||
|
IGL_ASSERT(m_B.rows() == m_B.cols() && "B must be square");
|
||
|
IGL_ASSERT(m_A.rows() == m_B.cols() && "A and B must have the same size");
|
||
|
set_shift(sigma, true);
|
||
|
}
|
||
|
void set_shift(const Scalar & sigma, const bool force = false)
|
||
|
{
|
||
|
if(sigma == m_sigma && !force)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
m_sigma = sigma;
|
||
|
const Eigen::SparseMatrix<Scalar> C = m_A + m_sigma * m_B;
|
||
|
m_solver.compute(C);
|
||
|
m_solver_is_successfully_factorized = (m_solver.info() == Eigen::Success);
|
||
|
}
|
||
|
int rows() const { return m_A.rows(); }
|
||
|
int cols() const { return m_A.cols(); }
|
||
|
void perform_op(const Scalar* x_in,Scalar* y_out) const
|
||
|
{
|
||
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> VectorXS;
|
||
|
Eigen::Map<const VectorXS>x(x_in, m_A.cols());
|
||
|
Eigen::Map<VectorXS>y(y_out, m_A.rows());
|
||
|
y = m_solver.solve(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
SparseMatProd Bop(B);
|
||
|
ShiftInvert op(A, B, sigma);
|
||
|
if(!op.m_solver_is_successfully_factorized)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
Spectra::SymGEigsShiftSolver<ShiftInvert, SparseMatProd, Spectra::GEigsMode::ShiftInvert> geigs(op, Bop, k, 2*k, sigma);
|
||
|
|
||
|
geigs.init();
|
||
|
geigs.compute(Spectra::SortRule::LargestMagn);
|
||
|
if (geigs.info() != Spectra::CompInfo::Successful)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
U = geigs.eigenvectors().template cast<typename DerivedU::Scalar>();
|
||
|
S = geigs.eigenvalues().template cast<typename DerivedS::Scalar>();
|
||
|
|
||
|
Eigen::VectorXi I;
|
||
|
igl::sort( Eigen::VectorXd(S), 1, false, S, I);
|
||
|
U = U(Eigen::all,I).eval();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
// generated by autoexplicit.sh
|
||
|
template bool igl::spectra::eigs<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::SparseLU<Eigen::SparseMatrix<double, 0, int>, Eigen::COLAMDOrdering<int> > >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::SparseMatrix<double, 0, int> const&, int , igl::EigsType, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
|
||
|
#endif
|