You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
8.3 KiB
223 lines
8.3 KiB
1 year ago
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#ifndef IGL_MIN_QUAD_WITH_FIXED_H
|
||
|
#define IGL_MIN_QUAD_WITH_FIXED_H
|
||
|
#include "igl_inline.h"
|
||
|
|
||
|
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
|
||
|
#include <Eigen/Core>
|
||
|
#include <Eigen/Dense>
|
||
|
#include <Eigen/Sparse>
|
||
|
// Bug in unsupported/Eigen/SparseExtra needs iostream first
|
||
|
#include <iostream>
|
||
|
#include <unsupported/Eigen/SparseExtra>
|
||
|
|
||
|
namespace igl
|
||
|
{
|
||
|
template <typename T>
|
||
|
struct min_quad_with_fixed_data;
|
||
|
/// Minimize a convex quadratic energy subject to fixed value and linear
|
||
|
/// equality constraints. Problems of the form
|
||
|
///
|
||
|
/// trace( 0.5*Z'*A*Z + Z'*B + constant )
|
||
|
///
|
||
|
/// subject to
|
||
|
///
|
||
|
/// Z(known,:) = Y, and
|
||
|
/// Aeq*Z = Beq
|
||
|
///
|
||
|
/// @tparam T should be a eigen matrix primitive type like int or double
|
||
|
/// @param[in] A n by n matrix of quadratic coefficients
|
||
|
/// @param[in] known list of indices to known rows in Z
|
||
|
/// @param[in] Y list of fixed values corresponding to known rows in Z
|
||
|
/// @param[in] Aeq m by n list of linear equality constraint coefficients
|
||
|
/// @param[in] pd flag specifying whether A(unknown,unknown) is positive definite
|
||
|
/// @param[in,out] data factorization struct with all necessary information to solve
|
||
|
/// using min_quad_with_fixed_solve
|
||
|
/// @return true on success, false on error
|
||
|
///
|
||
|
/// \pre rows of Aeq **should probably** be linearly independent.
|
||
|
/// During precomputation, the rows of a Aeq are checked via QR. But in case
|
||
|
/// they're not then resulting probably will no longer be sparse: it will be
|
||
|
/// slow.
|
||
|
///
|
||
|
template <typename T, typename Derivedknown>
|
||
|
IGL_INLINE bool min_quad_with_fixed_precompute(
|
||
|
const Eigen::SparseMatrix<T>& A,
|
||
|
const Eigen::MatrixBase<Derivedknown> & known,
|
||
|
const Eigen::SparseMatrix<T>& Aeq,
|
||
|
const bool pd,
|
||
|
min_quad_with_fixed_data<T> & data
|
||
|
);
|
||
|
/// Solves a system previously factored using min_quad_with_fixed_precompute
|
||
|
///
|
||
|
/// @tparam T type of sparse matrix (e.g. double)
|
||
|
/// @tparam DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
|
||
|
/// @tparam DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
|
||
|
/// @param[in] data factorization struct with all necessary precomputation to solve
|
||
|
/// @param[in] B n by k column of linear coefficients
|
||
|
/// @param[in] Y b by k list of constant fixed values
|
||
|
/// @param[in] Beq m by k list of linear equality constraint constant values
|
||
|
/// @param[out] Z n by k solution
|
||
|
/// @param[out] sol #unknowns+#lagrange by k solution to linear system
|
||
|
/// Returns true on success, false on error
|
||
|
template <
|
||
|
typename T,
|
||
|
typename DerivedB,
|
||
|
typename DerivedY,
|
||
|
typename DerivedBeq,
|
||
|
typename DerivedZ,
|
||
|
typename Derivedsol>
|
||
|
IGL_INLINE bool min_quad_with_fixed_solve(
|
||
|
const min_quad_with_fixed_data<T> & data,
|
||
|
const Eigen::MatrixBase<DerivedB> & B,
|
||
|
const Eigen::MatrixBase<DerivedY> & Y,
|
||
|
const Eigen::MatrixBase<DerivedBeq> & Beq,
|
||
|
Eigen::PlainObjectBase<DerivedZ> & Z,
|
||
|
Eigen::PlainObjectBase<Derivedsol> & sol);
|
||
|
/// \overload
|
||
|
template <
|
||
|
typename T,
|
||
|
typename DerivedB,
|
||
|
typename DerivedY,
|
||
|
typename DerivedBeq,
|
||
|
typename DerivedZ>
|
||
|
IGL_INLINE bool min_quad_with_fixed_solve(
|
||
|
const min_quad_with_fixed_data<T> & data,
|
||
|
const Eigen::MatrixBase<DerivedB> & B,
|
||
|
const Eigen::MatrixBase<DerivedY> & Y,
|
||
|
const Eigen::MatrixBase<DerivedBeq> & Beq,
|
||
|
Eigen::PlainObjectBase<DerivedZ> & Z);
|
||
|
/// \overload
|
||
|
/// \brief Minimize convex quadratic energy subject to fixed value and linear
|
||
|
/// equality constraints. Without prefactorization.
|
||
|
template <
|
||
|
typename T,
|
||
|
typename Derivedknown,
|
||
|
typename DerivedB,
|
||
|
typename DerivedY,
|
||
|
typename DerivedBeq,
|
||
|
typename DerivedZ>
|
||
|
IGL_INLINE bool min_quad_with_fixed(
|
||
|
const Eigen::SparseMatrix<T>& A,
|
||
|
const Eigen::MatrixBase<DerivedB> & B,
|
||
|
const Eigen::MatrixBase<Derivedknown> & known,
|
||
|
const Eigen::MatrixBase<DerivedY> & Y,
|
||
|
const Eigen::SparseMatrix<T>& Aeq,
|
||
|
const Eigen::MatrixBase<DerivedBeq> & Beq,
|
||
|
const bool pd,
|
||
|
Eigen::PlainObjectBase<DerivedZ> & Z);
|
||
|
/// Dense version optimized for very small, known at compile time sizes. Still
|
||
|
/// works for Eigen::Dynamic (and then everything needs to be Dynamic).
|
||
|
///
|
||
|
/// min_x ½ xᵀ H x + xᵀ f
|
||
|
/// subject to
|
||
|
/// A x = b
|
||
|
/// x(i) = bc(i) iff k(i)==true
|
||
|
///
|
||
|
/// @tparam Scalar (e.g., double)
|
||
|
/// @tparam n #H or Eigen::Dynamic if not known at compile time
|
||
|
/// @tparam m #A or Eigen::Dynamic if not known at compile time
|
||
|
/// @tparam Hpd whether H is positive definite (LLT used) or not (QR used)
|
||
|
/// @param[in] H #H by #H quadratic coefficients (only lower triangle used)
|
||
|
/// @param[in] f #H linear coefficients
|
||
|
/// @param[in] k #H list of flags whether to fix value
|
||
|
/// @param[in] bc #H value to fix to (if !k(i) then bc(i) is ignored)
|
||
|
/// @param[in] A #A by #H list of linear equality constraint coefficients, must be
|
||
|
/// linearly independent (with self and fixed value constraints)
|
||
|
/// @param[in] b #A list of linear equality right-hand sides
|
||
|
/// @return #H-long solution x
|
||
|
template <typename Scalar, int n, int m, bool Hpd=true>
|
||
|
IGL_INLINE Eigen::Matrix<Scalar,n,1> min_quad_with_fixed(
|
||
|
const Eigen::Matrix<Scalar,n,n> & H,
|
||
|
const Eigen::Matrix<Scalar,n,1> & f,
|
||
|
const Eigen::Array<bool,n,1> & k,
|
||
|
const Eigen::Matrix<Scalar,n,1> & bc,
|
||
|
const Eigen::Matrix<Scalar,m,n> & A,
|
||
|
const Eigen::Matrix<Scalar,m,1> & b);
|
||
|
/// \overload
|
||
|
template <typename Scalar, int n, bool Hpd=true>
|
||
|
IGL_INLINE Eigen::Matrix<Scalar,n,1> min_quad_with_fixed(
|
||
|
const Eigen::Matrix<Scalar,n,n> & H,
|
||
|
const Eigen::Matrix<Scalar,n,1> & f,
|
||
|
const Eigen::Array<bool,n,1> & k,
|
||
|
const Eigen::Matrix<Scalar,n,1> & bc);
|
||
|
/// \overload
|
||
|
///
|
||
|
/// \brief Special wrapper where the number of constrained values (i.e., true values
|
||
|
/// in k) is exposed as a template parameter. Not intended to be called
|
||
|
/// directly. The overhead of calling the overloads above is already minimal.
|
||
|
template <typename Scalar, int n, int kcount, bool Hpd/*no default*/>
|
||
|
IGL_INLINE Eigen::Matrix<Scalar,n,1> min_quad_with_fixed(
|
||
|
const Eigen::Matrix<Scalar,n,n> & H,
|
||
|
const Eigen::Matrix<Scalar,n,1> & f,
|
||
|
const Eigen::Array<bool,n,1> & k,
|
||
|
const Eigen::Matrix<Scalar,n,1> & bc);
|
||
|
}
|
||
|
|
||
|
/// Parameters and precomputed values for min_quad_with_fixed
|
||
|
template <typename T>
|
||
|
struct igl::min_quad_with_fixed_data
|
||
|
{
|
||
|
/// Size of original system: number of unknowns + number of knowns
|
||
|
int n;
|
||
|
/// Whether A(unknown,unknown) is positive definite
|
||
|
bool Auu_pd;
|
||
|
/// Whether A(unknown,unknown) is symmetric
|
||
|
bool Auu_sym;
|
||
|
/// Indices of known variables
|
||
|
Eigen::VectorXi known;
|
||
|
/// Indices of unknown variables
|
||
|
Eigen::VectorXi unknown;
|
||
|
/// Indices of lagrange variables
|
||
|
Eigen::VectorXi lagrange;
|
||
|
/// Indices of unknown variable followed by Indices of lagrange variables
|
||
|
Eigen::VectorXi unknown_lagrange;
|
||
|
/// Matrix multiplied against Y when constructing right hand side
|
||
|
Eigen::SparseMatrix<T> preY;
|
||
|
/// Type of solver used
|
||
|
enum SolverType
|
||
|
{
|
||
|
LLT = 0,
|
||
|
LDLT = 1,
|
||
|
LU = 2,
|
||
|
QR_LLT = 3,
|
||
|
NUM_SOLVER_TYPES = 4
|
||
|
} solver_type;
|
||
|
/// Solver data (factorization)
|
||
|
Eigen::SimplicialLLT <Eigen::SparseMatrix<T > > llt;
|
||
|
Eigen::SimplicialLDLT<Eigen::SparseMatrix<T > > ldlt;
|
||
|
Eigen::SparseLU<Eigen::SparseMatrix<T, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > lu;
|
||
|
/// QR factorization
|
||
|
/// Are rows of Aeq linearly independent?
|
||
|
bool Aeq_li;
|
||
|
/// Columns of Aeq corresponding to unknowns
|
||
|
int neq;
|
||
|
Eigen::SparseQR<Eigen::SparseMatrix<T>, Eigen::COLAMDOrdering<int> > AeqTQR;
|
||
|
Eigen::SparseMatrix<T> Aeqk;
|
||
|
Eigen::SparseMatrix<T> Aequ;
|
||
|
Eigen::SparseMatrix<T> Auu;
|
||
|
Eigen::SparseMatrix<T> AeqTQ1;
|
||
|
Eigen::SparseMatrix<T> AeqTQ1T;
|
||
|
Eigen::SparseMatrix<T> AeqTQ2;
|
||
|
Eigen::SparseMatrix<T> AeqTQ2T;
|
||
|
Eigen::SparseMatrix<T> AeqTR1;
|
||
|
Eigen::SparseMatrix<T> AeqTR1T;
|
||
|
Eigen::SparseMatrix<T> AeqTE;
|
||
|
Eigen::SparseMatrix<T> AeqTET;
|
||
|
/// @private Debug
|
||
|
Eigen::SparseMatrix<T> NA;
|
||
|
Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> NB;
|
||
|
};
|
||
|
|
||
|
#ifndef IGL_STATIC_LIBRARY
|
||
|
# include "min_quad_with_fixed.impl.h"
|
||
|
#endif
|
||
|
|
||
|
#endif
|