You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

223 lines
8.3 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_MIN_QUAD_WITH_FIXED_H
#define IGL_MIN_QUAD_WITH_FIXED_H
#include "igl_inline.h"
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Sparse>
// Bug in unsupported/Eigen/SparseExtra needs iostream first
#include <iostream>
#include <unsupported/Eigen/SparseExtra>
namespace igl
{
template <typename T>
struct min_quad_with_fixed_data;
/// Minimize a convex quadratic energy subject to fixed value and linear
/// equality constraints. Problems of the form
///
/// trace( 0.5*Z'*A*Z + Z'*B + constant )
///
/// subject to
///
/// Z(known,:) = Y, and
/// Aeq*Z = Beq
///
/// @tparam T should be a eigen matrix primitive type like int or double
/// @param[in] A n by n matrix of quadratic coefficients
/// @param[in] known list of indices to known rows in Z
/// @param[in] Y list of fixed values corresponding to known rows in Z
/// @param[in] Aeq m by n list of linear equality constraint coefficients
/// @param[in] pd flag specifying whether A(unknown,unknown) is positive definite
/// @param[in,out] data factorization struct with all necessary information to solve
/// using min_quad_with_fixed_solve
/// @return true on success, false on error
///
/// \pre rows of Aeq **should probably** be linearly independent.
/// During precomputation, the rows of a Aeq are checked via QR. But in case
/// they're not then resulting probably will no longer be sparse: it will be
/// slow.
///
template <typename T, typename Derivedknown>
IGL_INLINE bool min_quad_with_fixed_precompute(
const Eigen::SparseMatrix<T>& A,
const Eigen::MatrixBase<Derivedknown> & known,
const Eigen::SparseMatrix<T>& Aeq,
const bool pd,
min_quad_with_fixed_data<T> & data
);
/// Solves a system previously factored using min_quad_with_fixed_precompute
///
/// @tparam T type of sparse matrix (e.g. double)
/// @tparam DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
/// @tparam DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
/// @param[in] data factorization struct with all necessary precomputation to solve
/// @param[in] B n by k column of linear coefficients
/// @param[in] Y b by k list of constant fixed values
/// @param[in] Beq m by k list of linear equality constraint constant values
/// @param[out] Z n by k solution
/// @param[out] sol #unknowns+#lagrange by k solution to linear system
/// Returns true on success, false on error
template <
typename T,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ,
typename Derivedsol>
IGL_INLINE bool min_quad_with_fixed_solve(
const min_quad_with_fixed_data<T> & data,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedY> & Y,
const Eigen::MatrixBase<DerivedBeq> & Beq,
Eigen::PlainObjectBase<DerivedZ> & Z,
Eigen::PlainObjectBase<Derivedsol> & sol);
/// \overload
template <
typename T,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ>
IGL_INLINE bool min_quad_with_fixed_solve(
const min_quad_with_fixed_data<T> & data,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedY> & Y,
const Eigen::MatrixBase<DerivedBeq> & Beq,
Eigen::PlainObjectBase<DerivedZ> & Z);
/// \overload
/// \brief Minimize convex quadratic energy subject to fixed value and linear
/// equality constraints. Without prefactorization.
template <
typename T,
typename Derivedknown,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ>
IGL_INLINE bool min_quad_with_fixed(
const Eigen::SparseMatrix<T>& A,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<Derivedknown> & known,
const Eigen::MatrixBase<DerivedY> & Y,
const Eigen::SparseMatrix<T>& Aeq,
const Eigen::MatrixBase<DerivedBeq> & Beq,
const bool pd,
Eigen::PlainObjectBase<DerivedZ> & Z);
/// Dense version optimized for very small, known at compile time sizes. Still
/// works for Eigen::Dynamic (and then everything needs to be Dynamic).
///
/// min_x ½ xᵀ H x + xᵀ f
/// subject to
/// A x = b
/// x(i) = bc(i) iff k(i)==true
///
/// @tparam Scalar (e.g., double)
/// @tparam n #H or Eigen::Dynamic if not known at compile time
/// @tparam m #A or Eigen::Dynamic if not known at compile time
/// @tparam Hpd whether H is positive definite (LLT used) or not (QR used)
/// @param[in] H #H by #H quadratic coefficients (only lower triangle used)
/// @param[in] f #H linear coefficients
/// @param[in] k #H list of flags whether to fix value
/// @param[in] bc #H value to fix to (if !k(i) then bc(i) is ignored)
/// @param[in] A #A by #H list of linear equality constraint coefficients, must be
/// linearly independent (with self and fixed value constraints)
/// @param[in] b #A list of linear equality right-hand sides
/// @return #H-long solution x
template <typename Scalar, int n, int m, bool Hpd=true>
IGL_INLINE Eigen::Matrix<Scalar,n,1> min_quad_with_fixed(
const Eigen::Matrix<Scalar,n,n> & H,
const Eigen::Matrix<Scalar,n,1> & f,
const Eigen::Array<bool,n,1> & k,
const Eigen::Matrix<Scalar,n,1> & bc,
const Eigen::Matrix<Scalar,m,n> & A,
const Eigen::Matrix<Scalar,m,1> & b);
/// \overload
template <typename Scalar, int n, bool Hpd=true>
IGL_INLINE Eigen::Matrix<Scalar,n,1> min_quad_with_fixed(
const Eigen::Matrix<Scalar,n,n> & H,
const Eigen::Matrix<Scalar,n,1> & f,
const Eigen::Array<bool,n,1> & k,
const Eigen::Matrix<Scalar,n,1> & bc);
/// \overload
///
/// \brief Special wrapper where the number of constrained values (i.e., true values
/// in k) is exposed as a template parameter. Not intended to be called
/// directly. The overhead of calling the overloads above is already minimal.
template <typename Scalar, int n, int kcount, bool Hpd/*no default*/>
IGL_INLINE Eigen::Matrix<Scalar,n,1> min_quad_with_fixed(
const Eigen::Matrix<Scalar,n,n> & H,
const Eigen::Matrix<Scalar,n,1> & f,
const Eigen::Array<bool,n,1> & k,
const Eigen::Matrix<Scalar,n,1> & bc);
}
/// Parameters and precomputed values for min_quad_with_fixed
template <typename T>
struct igl::min_quad_with_fixed_data
{
/// Size of original system: number of unknowns + number of knowns
int n;
/// Whether A(unknown,unknown) is positive definite
bool Auu_pd;
/// Whether A(unknown,unknown) is symmetric
bool Auu_sym;
/// Indices of known variables
Eigen::VectorXi known;
/// Indices of unknown variables
Eigen::VectorXi unknown;
/// Indices of lagrange variables
Eigen::VectorXi lagrange;
/// Indices of unknown variable followed by Indices of lagrange variables
Eigen::VectorXi unknown_lagrange;
/// Matrix multiplied against Y when constructing right hand side
Eigen::SparseMatrix<T> preY;
/// Type of solver used
enum SolverType
{
LLT = 0,
LDLT = 1,
LU = 2,
QR_LLT = 3,
NUM_SOLVER_TYPES = 4
} solver_type;
/// Solver data (factorization)
Eigen::SimplicialLLT <Eigen::SparseMatrix<T > > llt;
Eigen::SimplicialLDLT<Eigen::SparseMatrix<T > > ldlt;
Eigen::SparseLU<Eigen::SparseMatrix<T, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > lu;
/// QR factorization
/// Are rows of Aeq linearly independent?
bool Aeq_li;
/// Columns of Aeq corresponding to unknowns
int neq;
Eigen::SparseQR<Eigen::SparseMatrix<T>, Eigen::COLAMDOrdering<int> > AeqTQR;
Eigen::SparseMatrix<T> Aeqk;
Eigen::SparseMatrix<T> Aequ;
Eigen::SparseMatrix<T> Auu;
Eigen::SparseMatrix<T> AeqTQ1;
Eigen::SparseMatrix<T> AeqTQ1T;
Eigen::SparseMatrix<T> AeqTQ2;
Eigen::SparseMatrix<T> AeqTQ2T;
Eigen::SparseMatrix<T> AeqTR1;
Eigen::SparseMatrix<T> AeqTR1T;
Eigen::SparseMatrix<T> AeqTE;
Eigen::SparseMatrix<T> AeqTET;
/// @private Debug
Eigen::SparseMatrix<T> NA;
Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> NB;
};
#ifndef IGL_STATIC_LIBRARY
# include "min_quad_with_fixed.impl.h"
#endif
#endif