You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

138 lines
7.5 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2021 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "march_cube.h"
#include <cstdint>
// Something bad is happening when I made this a function. Maybe
// something is not inlining? It ends up 1.25× slower than if the code is pasted
// into the respective functions in igl::marching_cubes
//
// Even if I make it a lambda with no arguments (all capture by reference [&])
// and call it immediately I get a 1.25× slow-down.
//
// Maybe keeping it out of a function allows the compiler to optimize with the
// loop? But then I guess that measn this function is not getting inlined? Or
// that it's not getting optimized after inlining?
//
template <
typename DerivedGV,
typename Scalar,
typename Index,
typename DerivedV,
typename DerivedF>
IGL_INLINE void igl::march_cube(
const DerivedGV & GV,
const Eigen::Matrix<Scalar,8,1> & cS,
const Eigen::Matrix<Index,8,1> & cI,
const Scalar & isovalue,
Eigen::PlainObjectBase<DerivedV> &V,
Index & n,
Eigen::PlainObjectBase<DerivedF> &F,
Index & m,
std::unordered_map<std::int64_t,int> & E2V)
{
// These consts get stored reasonably
#include "marching_cubes_tables.h"
// Seems this is also successfully inlined
const auto ij2vertex =
[&E2V,&V,&n,&GV]
(const Index & i, const Index & j, const Scalar & t)->Index
{
// Seems this is successfully inlined.
const auto ij2key = [](std::int32_t i,std::int32_t j)
{
if(i>j){ std::swap(i,j); }
std::int64_t ret = 0;
ret |= i;
ret |= static_cast<std::int64_t>(j) << 32;
return ret;
};
const auto key = ij2key(i,j);
const auto it = E2V.find(key);
int v = -1;
if(it == E2V.end())
{
// new vertex
if(n==V.rows()){ V.conservativeResize(V.rows()*2+1,V.cols()); }
V.row(n) = GV.row(i) + t*(GV.row(j) - GV.row(i));
v = n;
E2V[key] = v;
n++;
}else
{
v = it->second;
}
return v;
};
int c_flags = 0;
for(int c = 0; c < 8; c++)
{
if(cS(c) > isovalue){ c_flags |= 1<<c; }
}
//Find which edges are intersected by the surface
int e_flags = aiCubeEdgeFlags[c_flags];
//If the cube is entirely inside or outside of the surface, then there will be no intersections
if(e_flags == 0) { return; }
//Find the point of intersection of the surface with each edge
//Then find the normal to the surface at those points
Eigen::Matrix<Index,12,1> edge_vertices;
for(int e = 0; e < 12; e++)
{
#ifndef NDEBUG
edge_vertices[e] = -1;
#endif
//if there is an intersection on this edge
if(e_flags & (1<<e))
{
// find crossing point assuming linear interpolation along edges
const Scalar & a = cS(a2eConnection[e][0]);
const Scalar & b = cS(a2eConnection[e][1]);
Scalar t;
{
const Scalar delta = b-a;
if(delta == 0) { t = 0.5; }
t = (isovalue - a)/delta;
};
// record global index into local table
edge_vertices[e] =
ij2vertex(cI(a2eConnection[e][0]),cI(a2eConnection[e][1]),t);
assert(edge_vertices[e] >= 0);
assert(edge_vertices[e] < n);
}
}
// Insert the triangles that were found. There can be up to five per cube
for(int f = 0; f < 5; f++)
{
if(a2fConnectionTable[c_flags][3*f] < 0) break;
if(m==F.rows()){ F.conservativeResize(F.rows()*2+1,F.cols()); }
assert(edge_vertices[a2fConnectionTable[c_flags][3*f+0]]>=0);
assert(edge_vertices[a2fConnectionTable[c_flags][3*f+1]]>=0);
assert(edge_vertices[a2fConnectionTable[c_flags][3*f+2]]>=0);
F.row(m) <<
edge_vertices[a2fConnectionTable[c_flags][3*f+0]],
edge_vertices[a2fConnectionTable[c_flags][3*f+1]],
edge_vertices[a2fConnectionTable[c_flags][3*f+2]];
m++;
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::march_cube<Eigen::MatrixBase<Eigen::Matrix<float, -1, -1, 0, -1, -1> >, float, unsigned int, Eigen::Matrix<float, -1, 3, 1, -1, 3>, Eigen::Matrix<int, -1, 3, 1, -1, 3> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<float, 8, 1, 0, 8, 1> const&, Eigen::Matrix<unsigned int, 8, 1, 0, 8, 1> const&, float const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> >&, unsigned int&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> >&, unsigned int&, std::unordered_map<std::int64_t, int, std::hash<std::int64_t>, std::equal_to<std::int64_t>, std::allocator<std::pair<std::int64_t const, int> > >&);
template void igl::march_cube<Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, double, unsigned int, Eigen::Matrix<double, -1, 3, 1, -1, 3>, Eigen::Matrix<int, -1, 3, 1, -1, 3> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, 8, 1, 0, 8, 1> const&, Eigen::Matrix<unsigned int, 8, 1, 0, 8, 1> const&, double const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 1, -1, 3> >&, unsigned int&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> >&, unsigned int&, std::unordered_map<std::int64_t, int, std::hash<std::int64_t>, std::equal_to<std::int64_t>, std::allocator<std::pair<std::int64_t const, int> > >&);
template void igl::march_cube<Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, double, long, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, 8, 1, 0, 8, 1> const&, Eigen::Matrix<long, 8, 1, 0, 8, 1> const&, double const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, long&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, long&, std::unordered_map<std::int64_t, int, std::hash<std::int64_t>, std::equal_to<std::int64_t>, std::allocator<std::pair<std::int64_t const, int> > >&);
template void igl::march_cube<Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, double, unsigned int, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<double, 8, 1, 0, 8, 1> const&, Eigen::Matrix<unsigned int, 8, 1, 0, 8, 1> const&, double const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, unsigned int&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, unsigned int&, std::unordered_map<std::int64_t, int, std::hash<std::int64_t>, std::equal_to<std::int64_t>, std::allocator<std::pair<std::int64_t const, int> > >&);
#ifdef WIN32
template void __cdecl igl::march_cube<class Eigen::MatrixBase<class Eigen::Matrix<double,-1,-1,0,-1,-1> >,double,__int64,class Eigen::Matrix<double,-1,-1,0,-1,-1>,class Eigen::Matrix<int,-1,-1,0,-1,-1> >(class Eigen::MatrixBase<class Eigen::Matrix<double,-1,-1,0,-1,-1> > const &,class Eigen::Matrix<double,8,1,0,8,1> const &,class Eigen::Matrix<__int64,8,1,0,8,1> const &,double const &,class Eigen::PlainObjectBase<class Eigen::Matrix<double,-1,-1,0,-1,-1> > &,__int64 &,class Eigen::PlainObjectBase<class Eigen::Matrix<int,-1,-1,0,-1,-1> > &,__int64 &,class std::unordered_map<__int64,int,struct std::hash<__int64>,struct std::equal_to<__int64>,class std::allocator<struct std::pair<__int64 const ,int> > > &);
#endif
#endif