You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
7.9 KiB
289 lines
7.9 KiB
1 year ago
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2023 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#include "isolines_intrinsic.h"
|
||
|
#include "edge_crossings.h"
|
||
|
#include "cat.h"
|
||
|
#include "unique_edge_map.h"
|
||
|
#ifndef NDEBUG
|
||
|
# include "is_edge_manifold.h"
|
||
|
# include "is_vertex_manifold.h"
|
||
|
#endif
|
||
|
#include <unordered_map>
|
||
|
#include <vector>
|
||
|
|
||
|
template <
|
||
|
typename DerivedF,
|
||
|
typename DerivedS,
|
||
|
typename Derivedvals,
|
||
|
typename DerivediB,
|
||
|
typename DerivediFI,
|
||
|
typename DerivediE,
|
||
|
typename DerivedI>
|
||
|
void igl::isolines_intrinsic(
|
||
|
const Eigen::MatrixBase<DerivedF> & F,
|
||
|
const Eigen::MatrixBase<DerivedS> & S,
|
||
|
const Eigen::MatrixBase<Derivedvals> & vals,
|
||
|
Eigen::PlainObjectBase<DerivediB> & iB,
|
||
|
Eigen::PlainObjectBase<DerivediFI> & iFI,
|
||
|
Eigen::PlainObjectBase<DerivediE> & iE,
|
||
|
Eigen::PlainObjectBase<DerivedI> & I)
|
||
|
{
|
||
|
Eigen::MatrixXi uE;
|
||
|
Eigen::VectorXi EMAP,uEC,uEE;
|
||
|
|
||
|
{
|
||
|
Eigen::MatrixXi E;
|
||
|
igl::unique_edge_map(F,E,uE,EMAP,uEC,uEE);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
std::vector<DerivediB> viB(vals.size());
|
||
|
std::vector<DerivediFI> viFI(vals.size());
|
||
|
std::vector<DerivediE> viE(vals.size());
|
||
|
std::vector<DerivedI> vI(vals.size());
|
||
|
int num_vertices = 0;
|
||
|
for(int j = 0;j<vals.size();j++)
|
||
|
{
|
||
|
isolines_intrinsic(F,S,uE,EMAP,uEC,uEE,vals(j),viB[j],viFI[j],viE[j]);
|
||
|
viE[j].array() += num_vertices;
|
||
|
num_vertices += viB[j].rows();
|
||
|
vI[j] = DerivedI::Constant(viE[j].rows(),j);
|
||
|
}
|
||
|
igl::cat(1,viB,iB);
|
||
|
igl::cat(1,viFI,iFI);
|
||
|
igl::cat(1,viE,iE);
|
||
|
igl::cat(1,vI,I);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <
|
||
|
typename DerivedF,
|
||
|
typename DerivedS,
|
||
|
typename DeriveduE,
|
||
|
typename DerivedEMAP,
|
||
|
typename DeriveduEC,
|
||
|
typename DeriveduEE,
|
||
|
typename DerivediB,
|
||
|
typename DerivediFI,
|
||
|
typename DerivediE>
|
||
|
void igl::isolines_intrinsic(
|
||
|
const Eigen::MatrixBase<DerivedF> & F,
|
||
|
const Eigen::MatrixBase<DerivedS> & S,
|
||
|
const Eigen::MatrixBase<DeriveduE> & uE,
|
||
|
const Eigen::MatrixBase<DerivedEMAP> & EMAP,
|
||
|
const Eigen::MatrixBase<DeriveduEC> & uEC,
|
||
|
const Eigen::MatrixBase<DeriveduEE> & uEE,
|
||
|
const typename DerivedS::Scalar val,
|
||
|
Eigen::PlainObjectBase<DerivediB> & iB,
|
||
|
Eigen::PlainObjectBase<DerivediFI> & iFI,
|
||
|
Eigen::PlainObjectBase<DerivediE> & iE)
|
||
|
{
|
||
|
using Scalar = typename DerivedS::Scalar;
|
||
|
|
||
|
std::unordered_map<int,int> uE2I;
|
||
|
Eigen::Matrix<Scalar,Eigen::Dynamic,1> T;
|
||
|
igl::edge_crossings(uE,S,val,uE2I,T);
|
||
|
|
||
|
iB.resize(uE2I.size(),F.cols());
|
||
|
iFI.resize(uE2I.size());
|
||
|
Eigen::VectorXi U(uE2I.size());
|
||
|
for(auto & pair : uE2I)
|
||
|
{
|
||
|
const int u = pair.first;
|
||
|
const int w = pair.second;
|
||
|
// first face incident on uE(u,:)
|
||
|
const int e = uEE(uEC(u));
|
||
|
const int f = e % F.rows();
|
||
|
const int k = e / F.rows();
|
||
|
const bool flip = uE(u,0) != F(f,(k+1)%3);
|
||
|
const double t = T(w);
|
||
|
iB(w,k) = 0;
|
||
|
iB(w,(k+1)%3) = flip? t:1-t;
|
||
|
iB(w,(k+2)%3) = flip?1-t:t;
|
||
|
iFI(w) = f;
|
||
|
U(w) = u;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Vertex crossings
|
||
|
std::unordered_map<int,int> V2I;
|
||
|
{
|
||
|
const auto add_vertex_crossing = [&iB,&iFI](const int k, const int i, const int j)
|
||
|
{
|
||
|
if(k >= iB.rows())
|
||
|
{
|
||
|
iB.conservativeResize(2*iB.rows()+1,Eigen::NoChange);
|
||
|
iFI.conservativeResize(2*iFI.rows()+1,Eigen::NoChange);
|
||
|
}
|
||
|
iFI(k) = i;
|
||
|
iB.row(k) << 0,0,0;
|
||
|
iB(k,j) = 1;
|
||
|
};
|
||
|
int k = iB.rows();
|
||
|
for(int i = 0;i<F.rows();i++)
|
||
|
{
|
||
|
for(int j = 0;j<3;j++)
|
||
|
{
|
||
|
const int v = F(i,j);
|
||
|
if(S(v) == val)
|
||
|
{
|
||
|
if(V2I.find(v) == V2I.end())
|
||
|
{
|
||
|
V2I[v] = k;
|
||
|
add_vertex_crossing(k++,i,j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
iB.conservativeResize(k,Eigen::NoChange);
|
||
|
iFI.conservativeResize(k,Eigen::NoChange);
|
||
|
}
|
||
|
|
||
|
iE.resize(uE2I.size(),2);
|
||
|
const auto set_row = [&iE](const int k, const int i, const int j)
|
||
|
{
|
||
|
if(k >= iE.rows())
|
||
|
{
|
||
|
iE.conservativeResize(2*iE.rows()+1,Eigen::NoChange);
|
||
|
}
|
||
|
iE.row(k) << i,j;
|
||
|
};
|
||
|
{
|
||
|
int r = 0;
|
||
|
for(int f = 0;f < F.rows();f++)
|
||
|
{
|
||
|
// find first crossing edge
|
||
|
int i;
|
||
|
for(i = 0;i<3;i++)
|
||
|
{
|
||
|
if(uE2I.find(EMAP(f+F.rows()*i)) != uE2I.end())
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
int j;
|
||
|
for(j = i+1;j<3;j++)
|
||
|
{
|
||
|
if(uE2I.find(EMAP(f+F.rows()*j)) != uE2I.end())
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(j<3)
|
||
|
{
|
||
|
// Connect two edge crossings.
|
||
|
|
||
|
// other vertex
|
||
|
const int k = 3-i-j;
|
||
|
const int wi = uE2I[EMAP(f+F.rows()*i)];
|
||
|
const int wj = uE2I[EMAP(f+F.rows()*j)];
|
||
|
// flip orientation based on triangle gradient
|
||
|
bool flip = S(F(f,k)) < val;
|
||
|
flip = k%2? !flip:flip;
|
||
|
if(flip)
|
||
|
{
|
||
|
set_row(r++,wi,wj);
|
||
|
}else
|
||
|
{
|
||
|
set_row(r++,wj,wi);
|
||
|
}
|
||
|
}else if(i<3)
|
||
|
{
|
||
|
// The only valid vertex crossing is the opposite vertex
|
||
|
const int v = F(f,i);
|
||
|
// Is it a crossing?
|
||
|
assert(V2I.find(v) != V2I.end());
|
||
|
//if(V2I.find(v) != V2I.end())
|
||
|
{
|
||
|
const int wv = V2I[v];
|
||
|
const int wi = uE2I[EMAP(f+F.rows()*i)];
|
||
|
const bool flip = S(F(f,(i+1)%3)) > val;
|
||
|
if(flip)
|
||
|
{
|
||
|
set_row(r++,wi,wv);
|
||
|
}else
|
||
|
{
|
||
|
set_row(r++,wv,wi);
|
||
|
}
|
||
|
}
|
||
|
}else
|
||
|
{
|
||
|
// Could have 2 vertex crossings. We're only interested if there're exactly two and if the other vertex is "above".
|
||
|
int i = 0;
|
||
|
for(i = 0;i<3;i++)
|
||
|
{
|
||
|
if(S(F(f,i)) == val)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
int j;
|
||
|
for(j = i+1;j<3;j++)
|
||
|
{
|
||
|
if(S(F(f,j)) == val)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(j<3)
|
||
|
{
|
||
|
// check if the third is a crossing.
|
||
|
const int k = 3-i-j;
|
||
|
// Triangle is constant on the val. Skip.
|
||
|
if(S(F(f,k)) == val){ continue; }
|
||
|
// Is this a boundary edge?
|
||
|
const int u = EMAP(f+F.rows()*k);
|
||
|
const int count = uEC(u+1)-uEC(u);
|
||
|
if( count == 1 || S(F(f,k)) > val)
|
||
|
{
|
||
|
const int wi = V2I[F(f,i)];
|
||
|
const int wj = V2I[F(f,j)];
|
||
|
bool flip = S(F(f,k)) < val;
|
||
|
flip = k%2 ? !flip:flip;
|
||
|
if(flip)
|
||
|
{
|
||
|
set_row(r++,wj,wi);
|
||
|
}else
|
||
|
{
|
||
|
set_row(r++,wi,wj);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
iE.conservativeResize(r,Eigen::NoChange);
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
if(igl::is_vertex_manifold(F) && igl::is_edge_manifold(F))
|
||
|
{
|
||
|
// Check that every vertex has one in one out
|
||
|
Eigen::VectorXi in_count = Eigen::VectorXi::Zero(iB.rows());
|
||
|
Eigen::VectorXi out_count = Eigen::VectorXi::Zero(iB.rows());
|
||
|
for(int e = 0;e<iE.rows();e++)
|
||
|
{
|
||
|
const int i = iE(e,0);
|
||
|
out_count(i)++;
|
||
|
const int j = iE(e,1);
|
||
|
in_count(j)++;
|
||
|
}
|
||
|
for(int i = 0;i<iB.rows();i++)
|
||
|
{
|
||
|
assert(in_count(i) <= 1);
|
||
|
assert(out_count(i) <= 1);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
// generated by autoexplicit.sh
|
||
|
template void igl::isolines_intrinsic<Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
|
||
|
#endif
|