You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

289 lines
7.9 KiB

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2023 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "isolines_intrinsic.h"
#include "edge_crossings.h"
#include "cat.h"
#include "unique_edge_map.h"
#ifndef NDEBUG
# include "is_edge_manifold.h"
# include "is_vertex_manifold.h"
#endif
#include <unordered_map>
#include <vector>
template <
typename DerivedF,
typename DerivedS,
typename Derivedvals,
typename DerivediB,
typename DerivediFI,
typename DerivediE,
typename DerivedI>
void igl::isolines_intrinsic(
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<DerivedS> & S,
const Eigen::MatrixBase<Derivedvals> & vals,
Eigen::PlainObjectBase<DerivediB> & iB,
Eigen::PlainObjectBase<DerivediFI> & iFI,
Eigen::PlainObjectBase<DerivediE> & iE,
Eigen::PlainObjectBase<DerivedI> & I)
{
Eigen::MatrixXi uE;
Eigen::VectorXi EMAP,uEC,uEE;
{
Eigen::MatrixXi E;
igl::unique_edge_map(F,E,uE,EMAP,uEC,uEE);
}
{
std::vector<DerivediB> viB(vals.size());
std::vector<DerivediFI> viFI(vals.size());
std::vector<DerivediE> viE(vals.size());
std::vector<DerivedI> vI(vals.size());
int num_vertices = 0;
for(int j = 0;j<vals.size();j++)
{
isolines_intrinsic(F,S,uE,EMAP,uEC,uEE,vals(j),viB[j],viFI[j],viE[j]);
viE[j].array() += num_vertices;
num_vertices += viB[j].rows();
vI[j] = DerivedI::Constant(viE[j].rows(),j);
}
igl::cat(1,viB,iB);
igl::cat(1,viFI,iFI);
igl::cat(1,viE,iE);
igl::cat(1,vI,I);
}
}
template <
typename DerivedF,
typename DerivedS,
typename DeriveduE,
typename DerivedEMAP,
typename DeriveduEC,
typename DeriveduEE,
typename DerivediB,
typename DerivediFI,
typename DerivediE>
void igl::isolines_intrinsic(
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<DerivedS> & S,
const Eigen::MatrixBase<DeriveduE> & uE,
const Eigen::MatrixBase<DerivedEMAP> & EMAP,
const Eigen::MatrixBase<DeriveduEC> & uEC,
const Eigen::MatrixBase<DeriveduEE> & uEE,
const typename DerivedS::Scalar val,
Eigen::PlainObjectBase<DerivediB> & iB,
Eigen::PlainObjectBase<DerivediFI> & iFI,
Eigen::PlainObjectBase<DerivediE> & iE)
{
using Scalar = typename DerivedS::Scalar;
std::unordered_map<int,int> uE2I;
Eigen::Matrix<Scalar,Eigen::Dynamic,1> T;
igl::edge_crossings(uE,S,val,uE2I,T);
iB.resize(uE2I.size(),F.cols());
iFI.resize(uE2I.size());
Eigen::VectorXi U(uE2I.size());
for(auto & pair : uE2I)
{
const int u = pair.first;
const int w = pair.second;
// first face incident on uE(u,:)
const int e = uEE(uEC(u));
const int f = e % F.rows();
const int k = e / F.rows();
const bool flip = uE(u,0) != F(f,(k+1)%3);
const double t = T(w);
iB(w,k) = 0;
iB(w,(k+1)%3) = flip? t:1-t;
iB(w,(k+2)%3) = flip?1-t:t;
iFI(w) = f;
U(w) = u;
}
// Vertex crossings
std::unordered_map<int,int> V2I;
{
const auto add_vertex_crossing = [&iB,&iFI](const int k, const int i, const int j)
{
if(k >= iB.rows())
{
iB.conservativeResize(2*iB.rows()+1,Eigen::NoChange);
iFI.conservativeResize(2*iFI.rows()+1,Eigen::NoChange);
}
iFI(k) = i;
iB.row(k) << 0,0,0;
iB(k,j) = 1;
};
int k = iB.rows();
for(int i = 0;i<F.rows();i++)
{
for(int j = 0;j<3;j++)
{
const int v = F(i,j);
if(S(v) == val)
{
if(V2I.find(v) == V2I.end())
{
V2I[v] = k;
add_vertex_crossing(k++,i,j);
}
}
}
}
iB.conservativeResize(k,Eigen::NoChange);
iFI.conservativeResize(k,Eigen::NoChange);
}
iE.resize(uE2I.size(),2);
const auto set_row = [&iE](const int k, const int i, const int j)
{
if(k >= iE.rows())
{
iE.conservativeResize(2*iE.rows()+1,Eigen::NoChange);
}
iE.row(k) << i,j;
};
{
int r = 0;
for(int f = 0;f < F.rows();f++)
{
// find first crossing edge
int i;
for(i = 0;i<3;i++)
{
if(uE2I.find(EMAP(f+F.rows()*i)) != uE2I.end())
{
break;
}
}
int j;
for(j = i+1;j<3;j++)
{
if(uE2I.find(EMAP(f+F.rows()*j)) != uE2I.end())
{
break;
}
}
if(j<3)
{
// Connect two edge crossings.
// other vertex
const int k = 3-i-j;
const int wi = uE2I[EMAP(f+F.rows()*i)];
const int wj = uE2I[EMAP(f+F.rows()*j)];
// flip orientation based on triangle gradient
bool flip = S(F(f,k)) < val;
flip = k%2? !flip:flip;
if(flip)
{
set_row(r++,wi,wj);
}else
{
set_row(r++,wj,wi);
}
}else if(i<3)
{
// The only valid vertex crossing is the opposite vertex
const int v = F(f,i);
// Is it a crossing?
assert(V2I.find(v) != V2I.end());
//if(V2I.find(v) != V2I.end())
{
const int wv = V2I[v];
const int wi = uE2I[EMAP(f+F.rows()*i)];
const bool flip = S(F(f,(i+1)%3)) > val;
if(flip)
{
set_row(r++,wi,wv);
}else
{
set_row(r++,wv,wi);
}
}
}else
{
// Could have 2 vertex crossings. We're only interested if there're exactly two and if the other vertex is "above".
int i = 0;
for(i = 0;i<3;i++)
{
if(S(F(f,i)) == val)
{
break;
}
}
int j;
for(j = i+1;j<3;j++)
{
if(S(F(f,j)) == val)
{
break;
}
}
if(j<3)
{
// check if the third is a crossing.
const int k = 3-i-j;
// Triangle is constant on the val. Skip.
if(S(F(f,k)) == val){ continue; }
// Is this a boundary edge?
const int u = EMAP(f+F.rows()*k);
const int count = uEC(u+1)-uEC(u);
if( count == 1 || S(F(f,k)) > val)
{
const int wi = V2I[F(f,i)];
const int wj = V2I[F(f,j)];
bool flip = S(F(f,k)) < val;
flip = k%2 ? !flip:flip;
if(flip)
{
set_row(r++,wj,wi);
}else
{
set_row(r++,wi,wj);
}
}
}
}
}
iE.conservativeResize(r,Eigen::NoChange);
}
#ifndef NDEBUG
if(igl::is_vertex_manifold(F) && igl::is_edge_manifold(F))
{
// Check that every vertex has one in one out
Eigen::VectorXi in_count = Eigen::VectorXi::Zero(iB.rows());
Eigen::VectorXi out_count = Eigen::VectorXi::Zero(iB.rows());
for(int e = 0;e<iE.rows();e++)
{
const int i = iE(e,0);
out_count(i)++;
const int j = iE(e,1);
in_count(j)++;
}
for(int i = 0;i<iB.rows();i++)
{
assert(in_count(i) <= 1);
assert(out_count(i) <= 1);
}
}
#endif
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::isolines_intrinsic<Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
#endif