Semi-automatic and Adaptive One multiple pole A int_{-1}^{1} sin( 1/(x-A) ) dx Pole is 1.100 N-point rational Fejer with N = 22.000 Exact relative error: 1.0055212044554036e-14 Execution time: 1.4562599999999998e-02 Semi-automatic rational Fejer: Number of poles: 100.000 Initial iteration: 1.000 Number of iterations: 22.000 Estimated relative error: 1.6758686740923289e-15 Exact relative error: 6.3310594354599494e-15 Execution time: 1.6437129999999997e-01 Semi-automatic rational Fejer with limited number of iterations: Number of poles: 100.000 Initial iteration: 20.000 Number of iterations: 3.000 Estimated relative error: 1.6758686740923289e-15 Exact relative error: 6.3310594354599494e-15 Execution time: 7.1796100000000002e-02 N-point rational Fejer with N = 15.000 Exact relative error: 6.3408911983479571e-11 Execution time: 1.2087000000000001e-02 Adaptive rational Fejer (1): Number of subintervals: 4.000 Number of different quadrature formulae: 4.000 Number of points in each subinterval: 15.000 Estimated relative error: 1.1056078058248075e-16 Exact relative error: 1.8620763045470439e-16 Execution time: 9.2438099999999995e-02 Adaptive rational Fejer (2): Number of subintervals: 12.000 Number of different quadrature formulae: 1.000 Number of points in each subinterval: 15.000 Estimated relative error: 2.4730700919765422e-16 Exact relative error: 1.8620763045470439e-16 Execution time: 3.6251100000000001e-02 Matlab's built-in QUADGK: Minimal number of subintervals: 10.000 Number of points in each subinterval: 15.000 Estimated relative error: 1.3223651256509891e-16 Exact relative error: 1.8620763045470439e-16 Execution time: 1.4557000000000001e-03