import torch import os import config from utils import * import tensorflow.keras as keras from keras.models import load_model from keras.preprocessing import image import matplotlib.pyplot as plt train_data, train_ans, test_data, test_ans = load_data() print('Using loaded model to predict...') model = load_model('model.h5') np.set_printoptions(precision=4) # test print("Test network") pred = model.predict(test_data,batch_size=BatchSize) pred = pred.reshape((200,)) print(np.abs(pred-test_ans).shape) print(test_ans.shape) acc = np.mean(np.abs(pred-test_ans) < 1000) print(pred.shape) print('Prediction Accuracy: %.2f%%' % (acc*100)) model.save('./weights/model.h5') print("Model summary") model.summary()