% This file's purpose is to compare quadtree, gauss-green, and szego-green... % quadrature methods using a small suite of test cases defined by two % domains and various integrands: % Domains: shape=1; testIntegrands=2; % 1. A circular region whose boundary is defined by four rational curves lroffset=[.3957106819596820 -1.5728593603867]; Circletemp=load("Circle.mat"); Circle= Circletemp.Circle1; Circle(1:3:end,:)=Circle(1:3:end,:)+lroffset(1).*Circle(3:3:end,:); Circle(2:3:end,:)=Circle(2:3:end,:)+lroffset(2).*Circle(3:3:end,:); % 2. A region defined by the intersection of two circular regions. offset=.1364728595817; C1=Circle; C1(2:3:end,:)=C1(2:3:end,:)+offset.*C1(3:3:end,:); C2=Circle; C2(2:3:end,:)=C2(2:3:end,:)-offset.*C1(3:3:end,:); InterCircles=RatboolEls(C1,C2,true); InterCircles=InterCircles{1}; % plot_rat_bern_poly(InterCircles{1},2,.001,'k') % Integrands: % 1. Monomials up to 6th degree: (1, x, y, ...) monfuncts={@(x,y) ones(size(x)); @(x,y) x; @(x,y) y; @(x,y) x.^2; @(x,y) x.*y; @(x,y) y.^2; @(x,y) x.^3; @(x,y) x.^2.*y; @(x,y) x.*y.^2; @(x,y) y.^3; @(x,y) x.^4; @(x,y) x.^3.*y; @(x,y) x.^2.*y.^2; @(x,y) x.*y.^3; @(x,y) y.^4; @(x,y) x.^5; @(x,y) x.^4.*y; @(x,y) x.^3.*y.^2; @(x,y) x.^2.*y.^3; @(x,y) x.*y.^4; @(x,y) y.^5; @(x,y) x.^6; @(x,y) x.^5.*y; @(x,y) x.^4.*y.^2; @(x,y) x.^3.*y.^3; @(x,y) x.^2.*y.^4; @(x,y) x.*y.^5; @(x,y) y.^6;} % 2. Three polynomials of degree 2 (bilinear), 4 (biquadratic), and 6 % (bicubic) polyfuncts={@(x,y) (2*x.^2 +x.*y - y +2); @(x,y) (2*x.^2.*y.^2 +.3*x.^2.*y - y.^4 + 3*x +2); @(x,y) (x.^5 - 5*y.^3.*x.^3 + .2*x.^2 + 2*y.*x.^2 +3);} % 3. A rational function of degree 4 and an exponential function. otherfuncts={@(x,y) (y.^3 - (x.^3.*y.^2) - (x.*y) -3)./((x.^2).*(y.^2) +10); @(x,y) 10*(exp( - x.^2 ) + 2*y);} addpath("../Rational_Quadrature/Matlab/Src",... "../Rational_Quadrature/Matlab/Tests",... "../Rational_Quadrature/Matlab/ThirdPartySupportingCode") d=2; gaussOrders=[2:15] % Test cases: There are 3 functions that we will consider, two of which have % known antiderivatives. These functions were taken from if shape==0 shapeObject=Circle; elseif shape==1 shapeObject=InterCircles; end if testIntegrands==0 integrands=monfuncts; elseif testIntegrands==1 integrands=polyfuncts; elseif testIntegrands==2 integrands=otherfuncts; end RationalOn=0; numIntegrands=length(integrands); elemSize=size(shapeObject,1)/3; int2evals=zeros(length(numIntegrands),1); int2errs=zeros(length(numIntegrands),1); ggevals=int2evals; sgevals=int2evals; global evalCounter; for i=1:1 %numIntegrands close; field = @(x,y) field2(x,y,integrands{i}); if shape==0 truev = integral2(field, -1+lroffset(1),1+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+lroffset(2), @(x)sqrt(1-(x-lroffset(1)).^2)+lroffset(2),'AbsTol',1e-17,'RelTol',1e-18); elseif shape==1 truev = integral2(field, -sqrt(1-offset^2)+lroffset(1), sqrt(1-offset^2)+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+offset+lroffset(2),@(x)sqrt(1-(x-lroffset(1)).^2)-offset+lroffset(2),'AbsTol',1e-17,'RelTol',1e-18); end % fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,15); % mfanti=@(a,b) arrayfun(fanti,a,b); % SO{1}=shapeObject; truev=RatPolygonIntegrate(SO,mfanti,24,16); for jj=1:14 evalCounter=0; if shape==0 int2errs(jj) = truev-integral2(field, -1+lroffset(1),1+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+lroffset(2), @(x)sqrt(1-(x-lroffset(1)).^2)+lroffset(2),'RelTol',10^(-jj)); int2evals(jj)=evalCounter; elseif shape==1 int2errs(jj) = truev-integral2(field, -sqrt(1-offset^2)+lroffset(1), sqrt(1-offset^2)+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+offset+lroffset(2),@(x)sqrt(1-(x-lroffset(1)).^2)-offset+lroffset(2),'RelTol',10^(-jj+3)); int2evals(jj)=evalCounter; end end int2errs(int2errs==0)=1e-17; semilogy(int2evals,abs(int2errs),'k.','MarkerSize',36) hold on % plot_rat_bern_poly(shapeObject,2,.001,'k'); % Intersect each element, store moment of each material % fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,7); % mfanti=@(a,b) arrayfun(fanti,a,b); SO{1}=shapeObject; % truev=PolygonIntegrate(SO,mfanti,7); % IntersectionI1=zeros(nElemMesh1,1); % s=plot_bern_poly(Intersection{1},2,.001,{},{},true); % plot_rat_bern_poly(Intersection{1},2,.1,'r'); RationalOn=1; ggevals=zeros(length(gaussOrders),1); ggerrs=zeros(length(gaussOrders),1); sgevals=zeros(length(gaussOrders),1); sgerrs=zeros(length(gaussOrders),1); for jj=2:length(gaussOrders) j=gaussOrders(jj); if testIntegrands==0 kk=2*invTri(i)+6; kg=max(ceil(invTri(i)+1),2); elseif testIntegrands==1 kk=4*i+6; kg=max(i,2); else kk=0; end evalCounter=0; fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,kg); % intxw= @(a,b) gaussXW(@(x)field(x,b),0,a,j); mfanti=@(a,b) arrayfun(fanti,a,b); % mintxw= @(a,b) arrayfun(intxw,a,b); ggerrs(jj)=ggPolygonIntegrate(SO,field,j,kg); ggevals(jj)=evalCounter; % evalCounter=0; % sgerrs(jj)=sgPolygonIntegrate(SO,mfanti,j-1,kk)-truev; % sgevals(jj)=evalCounter; end semilogy(ggevals,abs(ggerrs),'b.','MarkerSize',36) % semilogy(sgevals,abs(sgerrs),'g.','MarkerSize',36) xlim([0,max(max(sgevals)*3,min(int2evals))]) end % end ggerrs=abs(ggerrs-ggerrs(14)); % Error = (sum(IntersectionI)-integral2(field,-2*.26180283,2*.26180283,-2*.26180283,2*.26180283))./integral2(field,-2*.26180283,2*.26180283,-2*.26180283,2*.26180283,'AbsTol',0); Error=abs(sum(IntersectionI1(:,gaussOrders),1)-truev); figure nplot=1000; epts=1.5; [x,y]= meshgrid([-epts:(epts/nplot):epts]+3,[(-epts:(epts/nplot):epts)']+3); x=x(:); y=y(:); xp=x; yp=y; % xp(x.^2+y.^2>1)=nan; yp(x.^2+y.^2>1)=nan; surf(reshape(xp,2*nplot+1,2*nplot+1),reshape(yp,2*nplot+1,2*nplot+1),zeros(2*nplot+1,2*nplot+1),field(reshape(xp,2*nplot+1,2*nplot+1),reshape(yp,2*nplot+1,2*nplot+1)),'edgecolor','none'); view([0 90]) hold on % for i=1:nElemMesh1 % % Mesh1{i}=Mesh1{i}; % plot_bern_poly(Mesh1{i},2,.001,{},{'k'},false) % end % plot_bern_poly(shapeObject,2,.001,{},{'k'},false) % for i=1:nElemMesh1 % % Mesh1{i}=Mesh1{i}; % plot_rat_bern_poly(Mesh2{i},2,.001,'k') % end % plot_rat_bern_poly(shapeObject,2,.001,'b') printError= floor(log(Error)/log(10)); title({sprintf('Background function: $5y^3 + x^2 + 2y +3$, Error $\\approx 10^{%d}$',printError),sprintf('Quadrature points per side of intersection: $%d^2$',gaussOrders(end-1)-1)},'interpreter','latex','FontSize',16) % title({sprintf('Background function: $\\frac{y^3 - x^3 y^2 - xy -3}{x^2y^2 + 100}$, Error $\\approx 10^{%d}$',printError),sprintf('Quadrature points per side of intersection: $%d^2$',gaussOrders(end-1)-1)},'interpreter','latex','FontSize',16) axis off colorbar title({sprintf('Background function: $\\frac{y^3 - x^3 y^2 - xy -3}{x^2y^2 + 100}$')},'interpreter','latex','FontSize',16) function xw = gaussXW(bound1,bound2,pts) % 15 point gauss quadrature weights and nodes on interval [-1,1] gaussQuad=load("gaussQuad"); w=gaussQuad.wv{pts-1}; x=gaussQuad.abc{pts-1}; scale=bound2-bound1; w=w*scale/2; x=(scale/2)*(x+1)+bound1; xw=[x w] end function kk = invTri(i) kk=floor(real((sqrt(1/4+2*(i-1))-1/2))); end