You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
252 lines
9.5 KiB
252 lines
9.5 KiB
2 years ago
|
% This file's purpose is to compare quadtree, gauss-green, and szego-green...
|
||
|
% quadrature methods using a small suite of test cases defined by two
|
||
|
% domains and various integrands:
|
||
|
% Domains:
|
||
|
clear all;
|
||
|
shape=0;
|
||
|
testIntegrands=0;
|
||
|
% 1. A circular region whose boundary is defined by four rational curves
|
||
|
lroffset=[.3957106819596820 -1.5728593603867];
|
||
|
Circletemp=load("Circle.mat"); Circle= Circletemp.Circle1;
|
||
|
Circle(1:3:end,:)=Circle(1:3:end,:)+lroffset(1).*Circle(3:3:end,:);
|
||
|
Circle(2:3:end,:)=Circle(2:3:end,:)+lroffset(2).*Circle(3:3:end,:);
|
||
|
% 2. A region defined by the intersection of two circular regions.
|
||
|
offset=.1364728595817;
|
||
|
C1=Circle; C1(2:3:end,:)=C1(2:3:end,:)+offset.*C1(3:3:end,:);
|
||
|
C2=Circle; C2(2:3:end,:)=C2(2:3:end,:)-offset.*C1(3:3:end,:);
|
||
|
C3=Circle; C3(1:3:end,:)=C3(1:3:end,:)+2*offset.*C3(3:3:end,:);
|
||
|
InterCirclestemp=RatboolEls(C1,C2,true); InterCircles=InterCirclestemp{1};
|
||
|
InterCirclesShift=InterCircles; InterCirclesShift(2:3:end,:)=InterCirclesShift(2:3:end,:)+(offset).*InterCirclesShift(3:3:end,:);
|
||
|
WeirdShapetemp=RatboolEls(InterCirclesShift,C3,false); WeirdShape=WeirdShapetemp{1};
|
||
|
WeirdShape(1:3:end,:)=WeirdShape(1:3:end,:)-.5*WeirdShape(3:3:end,:);
|
||
|
WeirdShape(2:3:end,:)=WeirdShape(2:3:end,:)+1.5*WeirdShape(3:3:end,:);
|
||
|
Circles{1}=Circle;
|
||
|
|
||
|
weirdObjectt=load("weirdObject"); weirdObject= weirdObjectt.fig1;
|
||
|
for kk=2:6
|
||
|
Circles{kk}=zeros(12,kk+2);
|
||
|
for iii=1:3:12
|
||
|
transformtemp=Circles{kk-1}(iii:(iii+2),:);
|
||
|
% transformtemp(1:2,:)=transformtemp(1:2,:).*transformtemp(3,:);
|
||
|
transformtemp2=zeros(3,kk+2);
|
||
|
transformtemp2(:,1)=transformtemp(:,1);
|
||
|
transformtemp2(:,kk+2)=transformtemp(:,kk+1);
|
||
|
for kkk=2:(kk+1)
|
||
|
transformtemp2(:,kkk)=(kkk-1)/(kk+1)*transformtemp(:,kkk-1)+(1-((kkk-1)/(kk+1)))*transformtemp(:,kkk);
|
||
|
end
|
||
|
% transformtemp2(1:2,:)=transformtemp2(1:2,:)./transformtemp2(3,:);
|
||
|
Circles{kk}(iii:(iii+2),:)=transformtemp2;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
% plot_rat_bern_poly(InterCircles,2,.001,'k')
|
||
|
% plot_rat_bern_poly(WeirdShape,2,.001,'k')
|
||
|
% Integrands:
|
||
|
% 1. Monomials up to 6th degree: (1, x, y, ...)
|
||
|
counter=1;
|
||
|
for i=0:5
|
||
|
for j=0:i
|
||
|
a=i; b=j;
|
||
|
monfuncts(counter) = {@(x,y) x.^a.*y.^(a-b)};
|
||
|
counter=counter+1;
|
||
|
end
|
||
|
end
|
||
|
% 2. Three polynomials of degree 2 (bilinear), 4 (biquadratic), and 6
|
||
|
% (bicubic)
|
||
|
polyfuncts={@(x,y) (2*x.^2 +x.*y - y +2);
|
||
|
@(x,y) (2*x.^2.*y.^2 +.3*x.^2.*y - y.^4 + 3*x +2);
|
||
|
@(x,y) (x.^5 - 5*y.^3.*x.^3 + .2*x.^2 + 2*y.*x.^2 +3);};
|
||
|
% 3. A rational function of degree 4 and an exponential function.
|
||
|
otherfuncts={@(x,y) (y.^3 - (x.^3.*y.^2) - (x.*y) -3)./((x.^2).*(y.^2) +10);
|
||
|
@(x,y) 10*(exp( - x.^2 ) + 2*y);
|
||
|
@(x,y) sqrt((x+10).^2+(x+10).*(y+10).^2 +x)};
|
||
|
addpath("../Rational_Quadrature/Matlab/Src",...
|
||
|
"../Rational_Quadrature/Matlab/Tests",...
|
||
|
"../Rational_Quadrature/Matlab/ThirdPartySupportingCode")
|
||
|
d=2;
|
||
|
gaussOrders=[3:3];
|
||
|
% Test cases: There are 3 functions that we will consider, two of which have
|
||
|
% known antiderivatives. These functions were taken from
|
||
|
|
||
|
|
||
|
if testIntegrands==0
|
||
|
integrands=monfuncts;
|
||
|
elseif testIntegrands==1
|
||
|
integrands=polyfuncts;
|
||
|
elseif testIntegrands==2
|
||
|
integrands=otherfuncts;
|
||
|
end
|
||
|
monfunctmat=zeros(length(integrands),6);
|
||
|
for jjj=1:1
|
||
|
if shape==0
|
||
|
shapeObject=Circles(1);
|
||
|
elseif shape==1
|
||
|
shapeObject=InterCircles;
|
||
|
elseif shape==2
|
||
|
shapeObject=WeirdShape;
|
||
|
elseif shape==3
|
||
|
% shapeObject=weirdObject;
|
||
|
end
|
||
|
% figure(7)
|
||
|
% plot_rat_bern_poly([C1;C2],2,.001,"k.")
|
||
|
% hold on
|
||
|
% plot_rat_bern_poly(shapeObject,2,.001,"b.")
|
||
|
% figure(8)
|
||
|
% plot_rat_bern_poly([C1;C2],2,.001,"k.")
|
||
|
% hold on
|
||
|
% plot_rat_bern_poly(shapeObject,2,.001,"b.")
|
||
|
|
||
|
RationalOn=0;
|
||
|
numIntegrands=length(integrands);
|
||
|
elemSize=size(shapeObject,1)/3;
|
||
|
|
||
|
int2evals=zeros(length(numIntegrands),1);
|
||
|
int2errs=zeros(length(numIntegrands),1);
|
||
|
ggevals=int2evals;
|
||
|
sgevals=int2evals;
|
||
|
global evalCounter;
|
||
|
global scatterEvals;
|
||
|
scatterEvals=0;
|
||
|
|
||
|
for i=1:length(integrands)
|
||
|
% figure(1)
|
||
|
field = @(x,y) field2(x,y,integrands{i});
|
||
|
if shape==0
|
||
|
truev = integral2(field, -1+lroffset(1),1+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+lroffset(2), @(x)sqrt(1-(x-lroffset(1)).^2)+lroffset(2),'AbsTol',1e-17,'RelTol',1e-18);
|
||
|
elseif shape==1
|
||
|
truev = integral2(field, -sqrt(1-offset^2)+lroffset(1), sqrt(1-offset^2)+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+offset+lroffset(2),@(x)sqrt(1-(x-lroffset(1)).^2)-offset+lroffset(2),'AbsTol',1e-17,'RelTol',1e-18);
|
||
|
elseif shape==2
|
||
|
fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,15);
|
||
|
mfanti=@(a,b) arrayfun(fanti,a,b);
|
||
|
SO{1}=shapeObject; truev=ggPolygonIntegrate(SO,mfanti,15);
|
||
|
elseif shape==2
|
||
|
fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,15);
|
||
|
mfanti=@(a,b) arrayfun(fanti,a,b);
|
||
|
SO{1}=shapeObject; truev=ggPolygonIntegrate(SO,mfanti,15);
|
||
|
elseif shape==3
|
||
|
fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,15);
|
||
|
mfanti=@(a,b) arrayfun(fanti,a,b);
|
||
|
SO{1}=shapeObject; truev=ggPolygonIntegrate(SO,mfanti,15);
|
||
|
end
|
||
|
for jj=1:14
|
||
|
evalCounter=0;
|
||
|
% if jj==2
|
||
|
% scatterEvals=1;
|
||
|
% else
|
||
|
% scatterEvals=0;
|
||
|
% end
|
||
|
if shape==0
|
||
|
int2errs(jj) = truev-integral2(field, -1+lroffset(1),1+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+lroffset(2), @(x)sqrt(1-(x-lroffset(1)).^2)+lroffset(2),'RelTol',10^(-jj));
|
||
|
int2evals(jj)=evalCounter;
|
||
|
elseif shape==1
|
||
|
int2errs(jj) = truev-integral2(field, -sqrt(1-offset^2)+lroffset(1), sqrt(1-offset^2)+lroffset(1), @(x)-sqrt(1-(x-lroffset(1)).^2)+offset+lroffset(2),@(x)sqrt(1-(x-lroffset(1)).^2)-offset+lroffset(2),'RelTol',10^(-jj+3));
|
||
|
int2evals(jj)=evalCounter;
|
||
|
end
|
||
|
end
|
||
|
int2errs(int2errs==0)=1e-17;
|
||
|
% figure(1)
|
||
|
% semilogy(int2evals,abs(int2errs),'k.','MarkerSize',36)
|
||
|
% hold on
|
||
|
% plot_rat_bern_poly(shapeObject,2,.001,'k');
|
||
|
% Intersect each element, store moment of each material
|
||
|
% fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,7);
|
||
|
% mfanti=@(a,b) arrayfun(fanti,a,b);
|
||
|
SO{1}=shapeObject;
|
||
|
|
||
|
% s=plot_bern_poly(Intersection{1},2,.001,{},{},true);
|
||
|
% plot_rat_bern_poly(Intersection{1},2,.1,'r');
|
||
|
RationalOn=1;
|
||
|
ggevals=zeros(length(gaussOrders),1);
|
||
|
ggerrs=zeros(length(gaussOrders),1);
|
||
|
sgevals=zeros(length(gaussOrders),1);
|
||
|
sgerrs=zeros(length(gaussOrders),1);
|
||
|
for jj=1:length(gaussOrders)
|
||
|
j=gaussOrders(jj);
|
||
|
if testIntegrands==0
|
||
|
kk=(jjj+1)*invTri(i)+3*(jjj+1);
|
||
|
kg=ceil(invTri(i)+1);
|
||
|
elseif testIntegrands==1
|
||
|
kk=4*i+6;
|
||
|
kg=i;
|
||
|
else
|
||
|
kg=4;
|
||
|
kk=j;
|
||
|
end
|
||
|
evalCounter=0;
|
||
|
fanti=@(a,b) gauss1D(@(x)field(x,b),0,a,kg);
|
||
|
% intxw= @(a,b) gaussXW(@(x)field(x,b),0,a,j);
|
||
|
mfanti=@(a,b) arrayfun(fanti,a,b);
|
||
|
% mintxw= @(a,b) arrayfun(intxw,a,b);
|
||
|
if jj==3
|
||
|
scatterEvals=1;
|
||
|
else
|
||
|
scatterEvals=0;
|
||
|
end
|
||
|
evalCounter=0;
|
||
|
ggerrs(jj)=ggPolygonIntegrate(SO,mfanti,j)-truev;
|
||
|
ggevals(jj)=evalCounter;
|
||
|
evalCounter=0;
|
||
|
sgerrs(jj)=sgPolygonIntegrate(SO,mfanti,j-1,kk)-truev;
|
||
|
sgevals(jj)=evalCounter;
|
||
|
end
|
||
|
monfunctmat(i,jjj)=[ggerrs(find(abs(ggevals)==sgevals(1),1))/sgerrs(1)]
|
||
|
% figure(i)
|
||
|
% semilogy(ggevals,abs(ggerrs),'b.','MarkerSize',36)
|
||
|
% hold on
|
||
|
% semilogy(sgevals,abs(sgerrs),'g.','MarkerSize',36)
|
||
|
% xlim([0,max(max(ggevals)*3,min(int2evals))])
|
||
|
end
|
||
|
|
||
|
end
|
||
|
% end
|
||
|
% Error = (sum(IntersectionI)-integral2(field,-2*.26180283,2*.26180283,-2*.26180283,2*.26180283))./integral2(field,-2*.26180283,2*.26180283,-2*.26180283,2*.26180283,'AbsTol',0);
|
||
|
% Error=abs(sum(IntersectionI1(:,gaussOrders),1)-truev);
|
||
|
% figure
|
||
|
% nplot=1000;
|
||
|
% epts=1.5;
|
||
|
% [x,y]= meshgrid([-epts:(epts/nplot):epts]+3,[(-epts:(epts/nplot):epts)']+3); x=x(:); y=y(:); xp=x; yp=y;
|
||
|
% xp(x.^2+y.^2>1)=nan; yp(x.^2+y.^2>1)=nan;
|
||
|
% surf(reshape(xp,2*nplot+1,2*nplot+1),reshape(yp,2*nplot+1,2*nplot+1),zeros(2*nplot+1,2*nplot+1),field(reshape(xp,2*nplot+1,2*nplot+1),reshape(yp,2*nplot+1,2*nplot+1)),'edgecolor','none');
|
||
|
% view([0 90])
|
||
|
% hold on
|
||
|
% for i=1:nElemMesh1
|
||
|
% % Mesh1{i}=Mesh1{i};
|
||
|
% plot_bern_poly(Mesh1{i},2,.001,{},{'k'},false)
|
||
|
% end
|
||
|
% plot_bern_poly(shapeObject,2,.001,{},{'k'},false)
|
||
|
% for i=1:nElemMesh1
|
||
|
% % Mesh1{i}=Mesh1{i};
|
||
|
% plot_rat_bern_poly(Mesh2{i},2,.001,'k')
|
||
|
% end
|
||
|
% plot_rat_bern_poly(shapeObject,2,.001,'b')
|
||
|
% printError= floor(log(Error)/log(10));
|
||
|
% title({sprintf('Background function: $5y^3 + x^2 + 2y +3$, Error $\\approx 10^{%d}$',printError),sprintf('Quadrature points per side of intersection: $%d^2$',gaussOrders(end-1)-1)},'interpreter','latex','FontSize',16)
|
||
|
% % title({sprintf('Background function: $\\frac{y^3 - x^3 y^2 - xy -3}{x^2y^2 + 100}$, Error $\\approx 10^{%d}$',printError),sprintf('Quadrature points per side of intersection: $%d^2$',gaussOrders(end-1)-1)},'interpreter','latex','FontSize',16)
|
||
|
% axis off
|
||
|
% colorbar
|
||
|
% title({sprintf('Background function: $\\frac{y^3 - x^3 y^2 - xy -3}{x^2y^2 + 100}$')},'interpreter','latex','FontSize',16)
|
||
|
figure;
|
||
|
if isempty(find(monfunctmat(:,1)==0))
|
||
|
lasti=size(monfunctmat,1)
|
||
|
else
|
||
|
lasti=find(monfunctmat(:,1)==0);
|
||
|
end
|
||
|
for jjj=1:1
|
||
|
for i=1:lasti
|
||
|
ertemp=monfunctmat(find(invTri(1:length(monfuncts))==i-1),1);
|
||
|
er(i)=mean(ertemp(ertemp~=0 & ertemp~=Inf & ~isnan(ertemp)));
|
||
|
end
|
||
|
plot(0:(lasti-1),log(abs(er))/log(10));
|
||
|
end
|
||
|
|
||
|
% function xw = gaussXW(bound1,bound2,pts)
|
||
|
% % 15 point gauss quadrature weights and nodes on interval [-1,1]
|
||
|
% gaussQuad=load("gaussQuad");
|
||
|
% w=gaussQuad.wv{pts-1};
|
||
|
% x=gaussQuad.abc{pts-1};
|
||
|
% scale=bound2-bound1;
|
||
|
% w=w*scale/2;
|
||
|
% x=(scale/2)*(x+1)+bound1;
|
||
|
% xw=[x w]
|
||
|
% end
|