Implicit surface rendering via ray tracing
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

228 lines
9.8 KiB

/*
* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2014-2022 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#include "imgui/imgui_helper.h"
#include "nvh/nvprint.hpp"
#include "nvvk/shaders_vk.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/debug_util_vk.hpp"
#include "nvvk/context_vk.hpp"
#include "nvvk/resourceallocator_vk.hpp"
#include "sky.hpp"
#include "nvvkhl/shaders/dh_comp.h"
#include "_autogen/sky.comp.h"
// clang-format off
template <typename T> inline T square(T a) {return a * a;}
// clang-format on
namespace nvvkhl {
static ProceduralSkyShaderParameters fillShaderParameters(const SkyParameters& input)
{
ProceduralSkyShaderParameters output{};
float light_angular_size = nvmath::clamp(input.angularSize, nv_to_rad * 0.1F, nv_to_rad * 90.F);
float light_solid_angle = 4.0F * nv_pi * square(sinf(light_angular_size * 0.5F));
float light_radiance = input.intensity / light_solid_angle;
if(input.maxLightRadiance > 0.F)
{
light_radiance = std::min(light_radiance, input.maxLightRadiance);
}
output.directionToLight = nvmath::normalize(-input.direction);
output.angularSizeOfLight = light_angular_size;
output.lightColor = light_radiance * input.color;
output.glowSize = nv_to_rad * nvmath::clamp(input.glowSize, 0.F, 90.F);
output.skyColor = input.skyColor * input.brightness;
output.glowIntensity = nvmath::clamp(input.glowIntensity, 0.F, 1.F);
output.horizonColor = input.horizonColor * input.brightness;
output.horizonSize = nv_to_rad * nvmath::clamp(input.horizonSize, 0.F, 90.F);
output.groundColor = input.groundColor * input.brightness;
output.glowSharpness = nvmath::clamp(input.glowSharpness, 1.F, 10.F);
output.directionUp = normalize(input.directionUp);
return output;
}
SkyDome::SkyDome(nvvk::Context* ctx, nvvk::ResourceAllocator* allocator)
{
setup(ctx->m_device, allocator);
}
void SkyDome::setup(const VkDevice& device, nvvk::ResourceAllocator* allocator)
{
m_device = device;
m_alloc = allocator;
m_debug.setup(device);
m_skyInfoBuf = m_alloc->createBuffer(sizeof(ProceduralSkyShaderParameters),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
NAME2_VK(m_skyInfoBuf.buffer, "SkyInfo");
// Descriptor: the output image and parameters
nvvk::DescriptorSetBindings bind;
bind.addBinding(SkyBindings::eSkyOutImage, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_COMPUTE_BIT);
bind.addBinding(SkyBindings::eSkyParam, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL);
m_skyDLayout = bind.createLayout(m_device);
m_skyDPool = bind.createPool(m_device);
m_skyDSet = nvvk::allocateDescriptorSet(m_device, m_skyDPool, m_skyDLayout);
// Write parameters information
std::vector<VkWriteDescriptorSet> writes = {};
VkDescriptorBufferInfo buf_info{m_skyInfoBuf.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(bind.makeWrite(m_skyDSet, SkyBindings::eSkyParam, &buf_info));
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
// Creating the pipeline layout
VkPushConstantRange push_constant_ranges = {VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(SkyPushConstant)};
std::vector<VkDescriptorSetLayout> layouts = {m_skyDLayout};
VkPipelineLayoutCreateInfo create_info{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
create_info.setLayoutCount = static_cast<uint32_t>(layouts.size());
create_info.pSetLayouts = layouts.data();
create_info.pushConstantRangeCount = 1;
create_info.pPushConstantRanges = &push_constant_ranges;
vkCreatePipelineLayout(m_device, &create_info, nullptr, &m_skyPipelineLayout);
NAME_VK(m_skyPipelineLayout);
// HDR Dome compute shader
VkPipelineShaderStageCreateInfo stage_info{VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO};
stage_info.stage = VK_SHADER_STAGE_COMPUTE_BIT;
stage_info.module = nvvk::createShaderModule(m_device, sky_comp, sizeof(sky_comp));
stage_info.pName = "main";
VkComputePipelineCreateInfo comp_info{VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO};
comp_info.layout = m_skyPipelineLayout;
comp_info.stage = stage_info;
vkCreateComputePipelines(m_device, {}, 1, &comp_info, nullptr, &m_skyPipeline);
NAME_VK(m_skyPipeline);
// Clean up
vkDestroyShaderModule(m_device, comp_info.stage.module, nullptr);
}
void SkyDome::setOutImage(const VkDescriptorImageInfo& outimage)
{
VkWriteDescriptorSet wds{VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET};
wds.dstSet = m_skyDSet;
wds.dstBinding = 0;
wds.descriptorCount = 1;
wds.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
wds.pImageInfo = &outimage;
vkUpdateDescriptorSets(m_device, 1, &wds, 0, nullptr);
}
void SkyDome::draw(const VkCommandBuffer& cmd, const nvmath::mat4f& view, const nvmath::mat4f& proj, const VkExtent2D& size)
{
LABEL_SCOPE_VK(cmd);
// This will be to have a world direction vector pointing to the pixel
nvmath::mat4f m = nvmath::invert(proj);
m.a30 = m.a31 = m.a32 = m.a33 = 0.0F;
m = nvmath::invert(view) * m;
// Information to the compute shader
SkyPushConstant pc{};
pc.mvp = m;
// Execution
std::vector<VkDescriptorSet> dst_sets = {m_skyDSet};
vkCmdPushConstants(cmd, m_skyPipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(SkyPushConstant), &pc);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, m_skyPipelineLayout, 0,
static_cast<uint32_t>(dst_sets.size()), dst_sets.data(), 0, nullptr);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, m_skyPipeline);
VkExtent2D group_counts = getGroupCounts(size);
vkCmdDispatch(cmd, group_counts.width, group_counts.height, 1);
}
void SkyDome::destroy()
{
m_alloc->destroy(m_skyInfoBuf);
vkDestroyPipeline(m_device, m_skyPipeline, nullptr);
vkDestroyPipelineLayout(m_device, m_skyPipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(m_device, m_skyDLayout, nullptr);
vkDestroyDescriptorPool(m_device, m_skyDPool, nullptr);
}
void SkyDome::updateParameterBuffer(VkCommandBuffer cmd) const
{
ProceduralSkyShaderParameters output = fillShaderParameters(m_skyParams);
vkCmdUpdateBuffer(cmd, m_skyInfoBuf.buffer, 0, sizeof(ProceduralSkyShaderParameters), &output);
// Make sure the buffer is available when using it
VkMemoryBarrier mb{VK_STRUCTURE_TYPE_MEMORY_BARRIER};
mb.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT | VK_ACCESS_MEMORY_READ_BIT;
mb.dstAccessMask = VK_ACCESS_MEMORY_WRITE_BIT | VK_ACCESS_MEMORY_READ_BIT;
vkCmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 1, &mb, 0, nullptr, 0, nullptr);
}
Light SkyDome::getSun() const
{
Light sun{};
sun.type = eLightTypeDirectional;
sun.angularSizeOrInvRange = m_skyParams.angularSize;
sun.direction = m_skyParams.direction;
sun.color = m_skyParams.color;
sun.intensity = m_skyParams.intensity;
return sun;
}
bool SkyDome::onUI()
{
using PE = ImGuiH::PropertyEditor;
bool changed{false};
nvmath::vec3f dir = m_skyParams.direction;
changed |= ImGuiH::azimuthElevationSliders(dir, true, m_skyParams.directionUp.y == 1.0F);
m_skyParams.direction = dir;
// clang-format off
changed |= PE::entry("Color", [&]() { return ImGui::ColorEdit3("##1", &m_skyParams.color.x, ImGuiColorEditFlags_Float); });
changed |= PE::entry("Irradiance", [&]() { return ImGui::SliderFloat("##1", &m_skyParams.intensity, 0.F, 100.F, "%.2f", ImGuiSliderFlags_Logarithmic); });
changed |= PE::entry("Angular Size", [&]() { return ImGui::SliderAngle("##1", &m_skyParams.angularSize, 0.1F, 20.F); });
// clang-format on
if(PE::treeNode("Extra"))
{
// clang-format off
changed |= PE::entry("Brightness", [&]() { return ImGui::SliderFloat("Brightness", &m_skyParams.brightness, 0.F, 1.F); });
changed |= PE::entry("Glow Size", [&]() { return ImGui::SliderFloat("Glow Size", &m_skyParams.glowSize, 0.F, 90.F); });
changed |= PE::entry("Glow Sharpness", [&]() { return ImGui::SliderFloat("Glow Sharpness", &m_skyParams.glowSharpness, 1.F, 10.F); });
changed |= PE::entry("Glow Intensity", [&]() { return ImGui::SliderFloat("Glow Intensity", &m_skyParams.glowIntensity, 0.F, 1.F); });
changed |= PE::entry("Horizon Size", [&]() { return ImGui::SliderFloat("Horizon Size", &m_skyParams.horizonSize, 0.F, 90.F); });
changed |= PE::entry("Sky Color", [&]() { return ImGui::ColorEdit3("Sky Color", &m_skyParams.skyColor.x, ImGuiColorEditFlags_Float); });
changed |= PE::entry("Horizon Color", [&]() { return ImGui::ColorEdit3("Horizon Color", &m_skyParams.horizonColor.x, ImGuiColorEditFlags_Float); });
changed |= PE::entry("Ground Color", [&]() { return ImGui::ColorEdit3("Ground Color", &m_skyParams.groundColor.x, ImGuiColorEditFlags_Float); });
// clang-format on
PE::treePop();
}
return changed;
}
} // namespace nvvkhl