/* * Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * SPDX-FileCopyrightText: Copyright (c) 2014-2022 NVIDIA CORPORATION * SPDX-License-Identifier: Apache-2.0 */ #ifndef FUNC_GLSL #define FUNC_GLSL 1 #include "constants.glsl" precision highp float; float square(float x) { return x * x; } float saturate(float x) { return clamp(x, 0.0F, 1.0F); } vec3 saturate(vec3 x) { return clamp(x, vec3(0.0F), vec3(1.0F)); } vec3 slerp(vec3 a, vec3 b, float angle, float t) { t = saturate(t); float sin1 = sin(angle * t); float sin2 = sin(angle * (1.0F - t)); float ta = sin1 / (sin1 + sin2); vec3 result = mix(a, b, ta); return normalize(result); } float clampedDot(vec3 x, vec3 y) { return clamp(dot(x, y), 0.0F, 1.0F); } // Return the tangent and binormal from the incoming normal void createCoordinateSystem(in vec3 normal, out vec3 tangent, out vec3 bitangent) { if(abs(normal.x) > abs(normal.y)) tangent = vec3(normal.z, 0.0F, -normal.x) / sqrt(normal.x * normal.x + normal.z * normal.z); else tangent = vec3(0.0F, -normal.z, normal.y) / sqrt(normal.y * normal.y + normal.z * normal.z); bitangent = cross(normal, tangent); } // Building an Orthonormal Basis, Revisited // by Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler, Max Liani, Ryusuke Villemin // https://graphics.pixar.com/library/OrthonormalB/ //----------------------------------------------------------------------- void orthonormalBasis(in vec3 normal, out vec3 tangent, out vec3 bitangent) { float sgn = normal.z > 0.0F ? 1.0F : -1.0F; float a = -1.0F / (sgn + normal.z); float b = normal.x * normal.y * a; tangent = vec3(1.0f + sgn * normal.x * normal.x * a, sgn * b, -sgn * normal.x); bitangent = vec3(b, sgn + normal.y * normal.y * a, -normal.y); } vec3 rotate(vec3 v, vec3 k, float theta) { float cos_theta = cos(theta); float sin_theta = sin(theta); return (v * cos_theta) + (cross(k, v) * sin_theta) + (k * dot(k, v)) * (1.0F - cos_theta); } //----------------------------------------------------------------------- // Return the UV in a lat-long HDR map //----------------------------------------------------------------------- vec2 getSphericalUv(vec3 v) { float gamma = asin(-v.y); float theta = atan(v.z, v.x); vec2 uv = vec2(theta * M_1_OVER_PI * 0.5F, gamma * M_1_OVER_PI) + 0.5F; return uv; } vec2 mixBary(vec2 a, vec2 b, vec2 c, vec3 bary) { return a * bary.x + b * bary.y + c * bary.z; } vec3 mixBary(vec3 a, vec3 b, vec3 c, vec3 bary) { return a * bary.x + b * bary.y + c * bary.z; } vec4 mixBary(vec4 a, vec4 b, vec4 c, vec3 bary) { return a * bary.x + b * bary.y + c * bary.z; } #endif // FUNC_GLSL