/* * Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * SPDX-FileCopyrightText: Copyright (c) 2014-2022 NVIDIA CORPORATION * SPDX-License-Identifier: Apache-2.0 */ #ifndef GGX_GLSL #define GGX_GLSL 1 #include "constants.glsl" //----------------------------------------------------------------------- // The following equation models the Fresnel reflectance term of the spec equation (aka F()) // Implementation of fresnel from [4], Equation 15 //----------------------------------------------------------------------- vec3 fShlick(vec3 f0, vec3 f90, float vDotH) { return f0 + (f90 - f0) * pow(clamp(vec3(1.0F) - vDotH, vec3(0.0F), vec3(1.0F)), vec3(5.0F)); } float fShlick(float f0, float f90, float vDotH) { return f0 + (f90 - f0) * pow(clamp(1.0 - vDotH, 0.0F, 1.0F), 5.0F); } //----------------------------------------------------------------------- // Smith Joint GGX // Note: Vis = G / (4 * nDotL * nDotV) // see Eric Heitz. 2014. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques, 3 // see Real-Time Rendering. Page 331 to 336. // see https://google.github.io/filament/Filament.md.html#materialsystem/specularbrdf/geometricshadowing(specularg) //----------------------------------------------------------------------- float vGgx(float nDotL, float nDotV, float alphaRoughness) { float alphaRoughnessSq = alphaRoughness * alphaRoughness; float ggxV = nDotL * sqrt(nDotV * nDotV * (1.0F - alphaRoughnessSq) + alphaRoughnessSq); float ggxL = nDotV * sqrt(nDotL * nDotL * (1.0F - alphaRoughnessSq) + alphaRoughnessSq); float ggx = ggxV + ggxL; if(ggx > 0.0F) { return 0.5F / ggx; } return 0.0F; } //----------------------------------------------------------------------- // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D()) // Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3. //----------------------------------------------------------------------- float dGgx(float nDotH, float alphaRoughness) { float alphaRoughnessSq = alphaRoughness * alphaRoughness; float f = (nDotH * nDotH) * (alphaRoughnessSq - 1.0F) + 1.0F; return alphaRoughnessSq / (M_PI * f * f); } //----------------------------------------------------------------------- // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#acknowledgments AppendixB //----------------------------------------------------------------------- vec3 brdfLambertian(vec3 f0, vec3 f90, vec3 diffuseColor, float vDotH) { // see https://seblagarde.wordpress.com/2012/01/08/pi-or-not-to-pi-in-game-lighting-equation/ return (1.0F - fShlick(f0, f90, vDotH)) * (diffuseColor / M_PI); } vec3 brdfLambertian(vec3 diffuseColor, float metallic) { return (1.0F - metallic) * (diffuseColor / M_PI); } //----------------------------------------------------------------------- // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#acknowledgments AppendixB //----------------------------------------------------------------------- vec3 brdfSpecularGGX(vec3 f0, vec3 f90, float alphaRoughness, float vDotH, float nDotL, float nDotV, float nDotH) { vec3 f = fShlick(f0, f90, vDotH); float vis = vGgx(nDotL, nDotV, alphaRoughness); float d = dGgx(nDotH, alphaRoughness); return f * vis * d; } //----------------------------------------------------------------------- //----------------------------------------------------------------------- vec3 ggxSampling(float specularAlpha, float r1, float r2) { float phi = r1 * 2.0F * M_PI; float cos_theta = sqrt((1.0F - r2) / (1.0F + (specularAlpha * specularAlpha - 1.0F) * r2)); float sin_theta = clamp(sqrt(1.0F - (cos_theta * cos_theta)), 0.0F, 1.0F); float sin_phi = sin(phi); float cos_phi = cos(phi); return vec3(sin_theta * cos_phi, sin_theta * sin_phi, cos_theta); } #endif // GGX_H