extract explicit mesh with topology information from implicit surfaces with boolean operations, and do surface/volume integrating on them.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

95 lines
5.7 KiB

#include <process.hpp>
#include <post_topo.hpp>
void map_chain_to_parameteric_plane(const baked_blobtree_t& tree,
const stl_vector_mp<Eigen::Vector3d>& vertices,
const stl_vector_mp<polygon_face_t>& faces,
const stl_vector_mp<stl_vector_mp<uint32_t>>& patches,
const stl_vector_mp<stl_vector_mp<uint32_t>>& chains,
const stl_vector_mp<boundary_edge_header_t>& chain_edge_headers,
const flat_hash_map_mp<uint32_t, stl_vector_mp<uint32_t>>& chain_of_patch,
const flat_hash_map_mp<uint32_t, uint32_t>& vertex_old_index_to_unique_index,
const dynamic_bitset_mp<>& chain_end_vertex_signular_flag,
flat_hash_map_mp<uint32_t, parameteric_plane_t>& parameteric_planes)
{
flat_hash_map_mp<uint32_t, stl_vector_mp<uint32_t>> patch_of_subface{};
for (const auto& [patch_index, _] : chain_of_patch) {
const auto& subface_index = faces[patches[patch_index][0]].subface_index;
patch_of_subface[subface_index].emplace_back(patch_index);
}
const auto& subfaces = tree.subfaces;
stl_vector_mp<uint32_t> unique_chain_indices{};
flat_hash_map_mp<uint32_t, uint32_t> old_chain_index_to_unique_index{};
auto unique_end_iter = unique_chain_indices.begin();
for (const auto& [subface_index, patch_indices] : patch_of_subface) {
const auto& subface = subfaces[subface_index].object_ptr.get();
auto mapping_func = subface.fetch_param_mapping_evaluator();
auto& parameteric_plane = parameteric_planes[subface_index];
auto& chain_vertices = parameteric_plane.chain_vertices;
auto& chain_group_indices = parameteric_plane.chain_group_indices;
auto& chain_vertex_flags = parameteric_plane.vertex_special_flags;
auto& chain_other_subface_indices = parameteric_plane.chain_other_subface_indices;
chain_group_indices.reserve(patch_indices.size());
unique_chain_indices.clear();
old_chain_index_to_unique_index.clear();
for (const auto& patch_index : patch_indices) {
const auto& chain_indices = chain_of_patch.at(patch_index);
unique_chain_indices.insert(unique_chain_indices.end(), chain_indices.begin(), chain_indices.end());
}
std::sort(unique_chain_indices.begin(), unique_chain_indices.end());
unique_end_iter = std::unique(unique_chain_indices.begin(), unique_chain_indices.end());
for (auto iter = unique_chain_indices.begin(); iter != unique_end_iter; ++iter)
old_chain_index_to_unique_index[*iter] = std::distance(unique_chain_indices.begin(), iter);
const auto unique_chain_count = std::distance(unique_chain_indices.begin(), unique_end_iter);
chain_vertices.reserve(unique_chain_count);
chain_vertex_flags.reserve(unique_chain_count);
chain_other_subface_indices.reserve(unique_chain_count);
for (const auto& chain_index : unique_chain_indices) {
const auto& chain = chains[chain_index];
auto& chain_vertices_ = chain_vertices.emplace_back();
chain_vertices_.resize(chain.size());
std::transform(chain.begin(), chain.end(), chain_vertices_.begin(), [&](uint32_t vertex_index) {
auto mapped_vertex_index = vertex_old_index_to_unique_index.at(vertex_index);
return mapping_func(vertices[mapped_vertex_index]);
});
auto& chain_vertex_flags_ = chain_vertex_flags.emplace_back();
chain_vertex_flags_.resize(chain.size());
chain_vertex_flags_[0] = chain_end_vertex_signular_flag[2 * chain_index];
chain_vertex_flags_[chain.size() - 1] = chain_end_vertex_signular_flag[2 * chain_index + 1];
chain_other_subface_indices.emplace_back(chain_edge_headers[chain_index].subface_indices);
}
for (const auto& patch_index : patch_indices) {
const auto& chain_indices = chain_of_patch.at(patch_index);
auto& chain_group = chain_group_indices.emplace_back();
std::transform(chain_indices.begin(),
chain_indices.end(),
std::back_inserter(chain_group),
[&](uint32_t chain_index) { return old_chain_index_to_unique_index[chain_index]; });
}
}
}
void remap_parameteric_plane_vertices(flat_hash_map_mp<uint32_t, parametric_plane_t>& parameteric_planes)
{
for (auto& [_, parameteric_plane] : parameteric_planes) {
auto& uv_bounds = parameteric_plane.uv_bounds;
for (auto& chain_vertices : parameteric_plane.chain_vertices) {
for (auto& vertex : chain_vertices) uv_bounds = uv_bounds.extend(vertex);
}
assert(uv_bounds.sizes().minCoeff() > epsilon);
const auto uv_bounds_rpc = uv_bounds.sizes().cwiseInverse().array();
for (auto& chain_vertices : parameteric_plane.chain_vertices) {
std::transform(chain_vertices.begin(),
chain_vertices.end(),
chain_vertices.begin(),
[&](const Eigen::Vector2d& uv) { return (uv - uv_bounds.min()).array() * uv_bounds_rpc; });
}
}
}